aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_Source.F90
blob: 1bb3accf663f470966b082b642c2f134decaa4b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
 /*@@
   @file      GRHydro_Source.F90
   @date      Sat Jan 26 02:03:56 2002
   @author    Ian Hawke
   @desc 
   The geometric source terms for the matter evolution
   @enddesc 
 @@*/

! Second order f.d.

#define DIFF_X_2(q) 0.5d0 * (q(i+1,j,k) - q(i-1,j,k)) * idx
#define DIFF_Y_2(q) 0.5d0 * (q(i,j+1,k) - q(i,j-1,k)) * idy
#define DIFF_Z_2(q) 0.5d0 * (q(i,j,k+1) - q(i,j,k-1)) * idz

! Fourth order f.d.

#define DIFF_X_4(q) (-q(i+2,j,k) + 8.d0 * q(i+1,j,k) - 8.d0 * q(i-1,j,k) + \
                      q(i-2,j,k)) / 12.d0 * idx
#define DIFF_Y_4(q) (-q(i,j+2,k) + 8.d0 * q(i,j+1,k) - 8.d0 * q(i,j-1,k) + \
                      q(i,j-2,k)) / 12.d0 * idy
#define DIFF_Z_4(q) (-q(i,j,k+2) + 8.d0 * q(i,j,k+1) - 8.d0 * q(i,j,k-1) + \
                      q(i,j,k-2)) / 12.d0 * idz

#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"
#include "GRHydro_Macros.h"

#define velx(i,j,k) vel(i,j,k,1)
#define vely(i,j,k) vel(i,j,k,2)
#define velz(i,j,k) vel(i,j,k,3)
 /*@@
   @routine    SourceTerms
   @date       Sat Jan 26 02:04:21 2002
   @author     Ian Hawke
   @desc 
   Calculate the geometric source terms and add to the update GFs
   @enddesc 
   @calls     
   @calledby   
   @history 
   Minor alterations of routine from GR3D.
   @endhistory 

@@*/

subroutine SourceTerms(CCTK_ARGUMENTS)
      
  implicit none
  
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  
  CCTK_INT :: i, j, k, nx, ny, nz
  CCTK_REAL :: one, two, half
  CCTK_REAL :: t00, t0x, t0y, t0z, txx, txy, txz, tyy, tyz, tzz
  CCTK_REAL :: sqrtdet, det, uxx, uxy, uxz, uyy, uyz, uzz, rhoenthalpyW2
  CCTK_REAL :: shiftx, shifty, shiftz, velxshift, velyshift, velzshift 
  CCTK_REAL :: vlowx, vlowy, vlowz
  CCTK_REAL :: dx_betax, dx_betay, dx_betaz, dy_betax, dy_betay,&
       dy_betaz, dz_betax, dz_betay, dz_betaz
  CCTK_REAL :: dx_alp, dy_alp, dz_alp
  CCTK_REAL :: tau_source, sx_source, sy_source, sz_source
  CCTK_REAL :: localgxx,localgxy,localgxz,localgyy,localgyz,localgzz
  CCTK_REAL :: dx_gxx, dx_gxy, dx_gxz, dx_gyy, dx_gyz, dx_gzz
  CCTK_REAL :: dy_gxx, dy_gxy, dy_gxz, dy_gyy, dy_gyz, dy_gzz
  CCTK_REAL :: dz_gxx, dz_gxy, dz_gxz, dz_gyy, dz_gyz, dz_gzz
  CCTK_REAL :: dx, dy, dz, idx, idy, idz
  CCTK_REAL :: psi4pt, dx_psi4, dy_psi4, dz_psi4
  CCTK_REAL :: shiftshiftk, shiftkx, shiftky, shiftkz
  CCTK_REAL :: sumTK
  CCTK_REAL :: halfshiftdgx, halfshiftdgy, halfshiftdgz
  CCTK_REAL :: halfTdgx, halfTdgy, halfTdgz
  CCTK_REAL :: invalp, invalp2

  logical, allocatable, dimension (:,:,:) :: force_spatial_second_order

  one = 1.0d0
  two = 2.0d0
  half = 0.5d0
  nx = cctk_lsh(1)
  ny = cctk_lsh(2)
  nz = cctk_lsh(3)
  dx = CCTK_DELTA_SPACE(1)
  dy = CCTK_DELTA_SPACE(2)
  dz = CCTK_DELTA_SPACE(3)
  idx = 1.d0/dx
  idy = 1.d0/dy
  idz = 1.d0/dz
 
!!$  Initialize the update terms to be zero.
!!$  This will guarantee that no garbage in the boundaries is updated.

  densrhs = 0.d0
  srhs = 0.d0
  taurhs = 0.d0

  if (evolve_tracer .ne. 0) then
    cons_tracerrhs = 0.0d0
  end if

  if (evolve_Y_e .ne. 0) then
     y_e_con_rhs = 0.0d0
  endif

!!$  Set up the array for checking the order. We switch to second order
!!$  differencing at boundaries and near excision regions.
!!$  Copied straight from BSSN.

  allocate (force_spatial_second_order(nx,ny,nz))
  force_spatial_second_order = .FALSE.
  
  if (spatial_order > 2) then
    !$OMP PARALLEL DO PRIVATE(i, j)
    do k = 1 + GRHydro_stencil, nz - GRHydro_stencil
      do j = 1 + GRHydro_stencil, ny - GRHydro_stencil
        do i = 1 + GRHydro_stencil, nx - GRHydro_stencil
          if ((i < 3).or.(i > cctk_lsh(1) - 2).or. &
               (j < 3).or.(j > cctk_lsh(2) - 2).or. &
               (k < 3).or.(k > cctk_lsh(3) - 2) ) then
            force_spatial_second_order(i,j,k) = .TRUE.
          else if ( use_mask > 0 ) then
            if (minval(emask(i-2:i+2,j-2:j+2,k-2:k+2)) < 0.75d0) then
              force_spatial_second_order(i,j,k) = .TRUE.
            end if
          end if
        end do
      end do
    end do
    !$OMP END PARALLEL DO
  end if
  
  !$OMP PARALLEL DO PRIVATE(i, j, local_spatial_order,&
  !$OMP localgxx,localgxy,localgxz,localgyy,localgyz,localgzz,&
  !$OMP psi4pt,det,sqrtdet,rhoenthalpyW2,shiftx,shifty,shiftz,&
  !$OMP dx_betax,dx_betay,dx_betaz,dy_betax,dy_betay,dy_betaz,&
  !$OMP dz_betax,dz_betay,dz_betaz,velxshift,velyshift,velzshift,&
  !$OMP vlowx,vlowy,vlowz,t00,t0x,t0y,t0z,txx,txy,txz,tyy,tyz,tzz,&
  !$OMP dx_alp,dy_alp,dz_alp,tau_source,sx_source,sy_source,sz_source,&
  !$OMP uxx, uxy, uxz, uyy, uyz, uzz,&
  !$OMP dx_gxx, dx_gxy, dx_gxz, dx_gyy, dx_gyz, dx_gzz,&
  !$OMP dy_gxx, dy_gxy, dy_gxz, dy_gyy, dy_gyz, dy_gzz,&
  !$OMP dz_gxx, dz_gxy, dz_gxz, dz_gyy, dz_gyz, dz_gzz,&
  !$OMP dx_psi4,dy_psi4,dz_psi4,shiftshiftk,shiftkx,shiftky,shiftkz,&
  !$OMP sumTK,halfshiftdgx,halfshiftdgy,halfshiftdgz,&
  !$OMP halfTdgx,halfTdgy,halfTdgz,invalp,invalp2)
  do k=1 + GRHydro_stencil,nz - GRHydro_stencil
    do j=1 + GRHydro_stencil,ny - GRHydro_stencil
      do i=1 + GRHydro_stencil,nx - GRHydro_stencil

        local_spatial_order = spatial_order
        if (force_spatial_second_order(i,j,k)) then
          local_spatial_order = 2
        end if
        
!!$        Set the metric terms.

        localgxx = gxx(i,j,k)
        localgxy = gxy(i,j,k)
        localgxz = gxz(i,j,k)
        localgyy = gyy(i,j,k)
        localgyz = gyz(i,j,k)
        localgzz = gzz(i,j,k)

        det =  SPATIAL_DETERMINANT(localgxx, localgxy, localgxz,\
             localgyy, localgyz, localgzz)
        sqrtdet = sqrt(det)
        call UpperMetric(uxx, uxy, uxz, uyy, uyz, uzz, det, localgxx,&
             localgxy, localgxz, localgyy, localgyz, localgzz)
        
!!$        All the matter variables (except velocity) always appear
!!$        together in this form

        rhoenthalpyW2 = (rho(i,j,k)*(one + eps(i,j,k)) + press(i,j,k))*&
             w_lorentz(i,j,k)**2
        
        if (shift_state .ne. 0) then 

          shiftx = betax(i,j,k)
          shifty = betay(i,j,k)
          shiftz = betaz(i,j,k)

          if (local_spatial_order .eq. 2) then

            dx_betax = DIFF_X_2(betax)
            dx_betay = DIFF_X_2(betay)
            dx_betaz = DIFF_X_2(betaz)
            
            dy_betax = DIFF_Y_2(betax)
            dy_betay = DIFF_Y_2(betay)
            dy_betaz = DIFF_Y_2(betaz)
            
            dz_betax = DIFF_Z_2(betax)
            dz_betay = DIFF_Z_2(betay)
            dz_betaz = DIFF_Z_2(betaz)

          else

            dx_betax = DIFF_X_4(betax)
            dx_betay = DIFF_X_4(betay)
            dx_betaz = DIFF_X_4(betaz)
            
            dy_betax = DIFF_Y_4(betax)
            dy_betay = DIFF_Y_4(betay)
            dy_betaz = DIFF_Y_4(betaz)
            
            dz_betax = DIFF_Z_4(betax)
            dz_betay = DIFF_Z_4(betay)
            dz_betaz = DIFF_Z_4(betaz)

          end if
          
        else

          shiftx = 0.0d0
          shifty = 0.0d0
          shiftz = 0.0d0

          dx_betax = 0.0d0
          dx_betay = 0.0d0
          dx_betaz = 0.0d0
          
          dy_betax = 0.0d0
          dy_betay = 0.0d0
          dy_betaz = 0.0d0
          
          dz_betax = 0.0d0
          dz_betay = 0.0d0
          dz_betaz = 0.0d0
          
        endif

        invalp = 1.0d0 / alp(i,j,k)
        invalp2 = invalp**2
        velxshift = velx(i,j,k) - shiftx*invalp
        velyshift = vely(i,j,k) - shifty*invalp
        velzshift = velz(i,j,k) - shiftz*invalp
        vlowx = velx(i,j,k)*localgxx + vely(i,j,k)*localgxy +&
             velz(i,j,k)*localgxz
        vlowy = velx(i,j,k)*localgxy + vely(i,j,k)*localgyy +&
             velz(i,j,k)*localgyz
        vlowz = velx(i,j,k)*localgxz + vely(i,j,k)*localgyz +&
             velz(i,j,k)*localgzz

!!$        For a change, these are T^{ij}

        t00 = (rhoenthalpyW2 - press(i,j,k))*invalp2
        t0x = rhoenthalpyW2*velxshift/alp(i,j,k) +&
             press(i,j,k)*shiftx*invalp2
        t0y = rhoenthalpyW2*velyshift/alp(i,j,k) +&
             press(i,j,k)*shifty*invalp2
        t0z = rhoenthalpyW2*velzshift/alp(i,j,k) +&
             press(i,j,k)*shiftz*invalp2
        txx = rhoenthalpyW2*velxshift*velxshift +&
             press(i,j,k)*(uxx - shiftx*shiftx*invalp2)
        txy = rhoenthalpyW2*velxshift*velyshift +&
             press(i,j,k)*(uxy - shiftx*shifty*invalp2)
        txz = rhoenthalpyW2*velxshift*velzshift +&
             press(i,j,k)*(uxz - shiftx*shiftz*invalp2)
        tyy = rhoenthalpyW2*velyshift*velyshift +&
             press(i,j,k)*(uyy - shifty*shifty*invalp2)
        tyz = rhoenthalpyW2*velyshift*velzshift +&
             press(i,j,k)*(uyz - shifty*shiftz*invalp2)
        tzz = rhoenthalpyW2*velzshift*velzshift +&
             press(i,j,k)*(uzz - shiftz*shiftz*invalp2)

!!$        Derivatives of the lapse, metric and shift

        if (local_spatial_order .eq. 2) then

          dx_alp = DIFF_X_2(alp)
          dy_alp = DIFF_Y_2(alp)
          dz_alp = DIFF_Z_2(alp)

        else

          dx_alp = DIFF_X_4(alp)
          dy_alp = DIFF_Y_4(alp)
          dz_alp = DIFF_Z_4(alp)

        end if
        
        if (local_spatial_order .eq. 2) then

           dx_gxx = DIFF_X_2(gxx)
           dx_gxy = DIFF_X_2(gxy)
           dx_gxz = DIFF_X_2(gxz)
           dx_gyy = DIFF_X_2(gyy)
           dx_gyz = DIFF_X_2(gyz)
           dx_gzz = DIFF_X_2(gzz)
           dy_gxx = DIFF_Y_2(gxx)
           dy_gxy = DIFF_Y_2(gxy)
           dy_gxz = DIFF_Y_2(gxz)
           dy_gyy = DIFF_Y_2(gyy)
           dy_gyz = DIFF_Y_2(gyz)
           dy_gzz = DIFF_Y_2(gzz)
           dz_gxx = DIFF_Z_2(gxx)
           dz_gxy = DIFF_Z_2(gxy)
           dz_gxz = DIFF_Z_2(gxz)
           dz_gyy = DIFF_Z_2(gyy)
           dz_gyz = DIFF_Z_2(gyz)
           dz_gzz = DIFF_Z_2(gzz)
           
        else

           dx_gxx = DIFF_X_4(gxx)
           dx_gxy = DIFF_X_4(gxy)
           dx_gxz = DIFF_X_4(gxz)
           dx_gyy = DIFF_X_4(gyy)
           dx_gyz = DIFF_X_4(gyz)
           dx_gzz = DIFF_X_4(gzz)
           dy_gxx = DIFF_Y_4(gxx)
           dy_gxy = DIFF_Y_4(gxy)
           dy_gxz = DIFF_Y_4(gxz)
           dy_gyy = DIFF_Y_4(gyy)
           dy_gyz = DIFF_Y_4(gyz)
           dy_gzz = DIFF_Y_4(gzz)
           dz_gxx = DIFF_Z_4(gxx)
           dz_gxy = DIFF_Z_4(gxy)
           dz_gxz = DIFF_Z_4(gxz)
           dz_gyy = DIFF_Z_4(gyy)
           dz_gyz = DIFF_Z_4(gyz)
           dz_gzz = DIFF_Z_4(gzz)

        end if
          
!!$        Contract the shift with the extrinsic curvature

        shiftshiftk = shiftx*shiftx*kxx(i,j,k) + &
                      shifty*shifty*kyy(i,j,k) + &
                      shiftz*shiftz*kzz(i,j,k) + &
             two*(shiftx*shifty*kxy(i,j,k) + &
                  shiftx*shiftz*kxz(i,j,k) + &
                  shifty*shiftz*kyz(i,j,k))

        shiftkx = shiftx*kxx(i,j,k) + shifty*kxy(i,j,k) + shiftz*kxz(i,j,k)
        shiftky = shiftx*kxy(i,j,k) + shifty*kyy(i,j,k) + shiftz*kyz(i,j,k)
        shiftkz = shiftx*kxz(i,j,k) + shifty*kyz(i,j,k) + shiftz*kzz(i,j,k)

!!$        Contract the matter terms with the extrinsic curvature

        sumTK = txx*kxx(i,j,k) + tyy*kyy(i,j,k) + tzz*kzz(i,j,k) &
             + two*(txy*kxy(i,j,k) + txz*kxz(i,j,k) + tyz*kyz(i,j,k))

!!$        Update term for tau
        
        tau_source = t00* &
             (shiftshiftk - (shiftx*dx_alp + shifty*dy_alp + shiftz*dz_alp) )&
             + t0x*(-dx_alp + two*shiftkx) &
             + t0y*(-dy_alp + two*shiftky) &
             + t0z*(-dz_alp + two*shiftkz) &
             + sumTK

!!$        The following looks very little like the terms in the
!!$        standard papers. Take a look in the ThornGuide to see why
!!$        it is really the same thing.

!!$        Contract the shift with derivatives of the metric

        halfshiftdgx = half*(shiftx*shiftx*dx_gxx + &
             shifty*shifty*dx_gyy + shiftz*shiftz*dx_gzz) + &
             shiftx*shifty*dx_gxy + shiftx*shiftz*dx_gxz + &
             shifty*shiftz*dx_gyz
        halfshiftdgy = half*(shiftx*shiftx*dy_gxx + &
             shifty*shifty*dy_gyy + shiftz*shiftz*dy_gzz) + &
             shiftx*shifty*dy_gxy + shiftx*shiftz*dy_gxz + &
             shifty*shiftz*dy_gyz
        halfshiftdgz = half*(shiftx*shiftx*dz_gxx + &
             shifty*shifty*dz_gyy + shiftz*shiftz*dz_gzz) + &
             shiftx*shifty*dz_gxy + shiftx*shiftz*dz_gxz + &
             shifty*shiftz*dz_gyz

!!$        Contract the matter with derivatives of the metric

        halfTdgx = half*(txx*dx_gxx + tyy*dx_gyy + tzz*dx_gzz) +&
             txy*dx_gxy + txz*dx_gxz + tyz*dx_gyz
        halfTdgy = half*(txx*dy_gxx + tyy*dy_gyy + tzz*dy_gzz) +&
             txy*dy_gxy + txz*dy_gxz + tyz*dy_gyz
        halfTdgz = half*(txx*dz_gxx + tyy*dz_gyy + tzz*dz_gzz) +&
             txy*dz_gxy + txz*dz_gxz + tyz*dz_gyz

        sx_source = t00*&
             (halfshiftdgx - alp(i,j,k)*dx_alp) +&
             t0x*(shiftx*dx_gxx + shifty*dx_gxy + shiftz*dx_gxz) +&
             t0y*(shiftx*dx_gxy + shifty*dx_gyy + shiftz*dx_gyz) +&
             t0z*(shiftx*dx_gxz + shifty*dx_gyz + shiftz*dx_gzz) +&
             halfTdgx + rhoenthalpyW2*&
             (vlowx*dx_betax + vlowy*dx_betay + vlowz*dx_betaz)*&
             invalp
        sy_source = t00*&
             (halfshiftdgy - alp(i,j,k)*dy_alp) +&
             t0x*(shiftx*dy_gxx + shifty*dy_gxy + shiftz*dy_gxz) +&
             t0y*(shiftx*dy_gxy + shifty*dy_gyy + shiftz*dy_gyz) +&
             t0z*(shiftx*dy_gxz + shifty*dy_gyz + shiftz*dy_gzz) +&
             halfTdgy + rhoenthalpyW2*&
             (vlowx*dy_betax + vlowy*dy_betay + vlowz*dy_betaz)*&
             invalp
        sz_source = t00*&
             (halfshiftdgz - alp(i,j,k)*dz_alp) +&
             t0x*(shiftx*dz_gxx + shifty*dz_gxy + shiftz*dz_gxz) +&
             t0y*(shiftx*dz_gxy + shifty*dz_gyy + shiftz*dz_gyz) +&
             t0z*(shiftx*dz_gxz + shifty*dz_gyz + shiftz*dz_gzz) +&
             halfTdgz + rhoenthalpyW2*&
             (vlowx*dz_betax + vlowy*dz_betay + vlowz*dz_betaz)*&
             invalp

        densrhs(i,j,k) = 0.d0
        srhs(i,j,k,1)  = alp(i,j,k)*sqrtdet*sx_source
        srhs(i,j,k,2)  = alp(i,j,k)*sqrtdet*sy_source
        srhs(i,j,k,3)  = alp(i,j,k)*sqrtdet*sz_source
        taurhs(i,j,k) = alp(i,j,k)*sqrtdet*tau_source
        
      enddo
    enddo
  enddo
  !$OMP END PARALLEL DO

  deallocate(force_spatial_second_order)

end subroutine SourceTerms