aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_RoeSolver.F90
blob: 329c081b74f4b474afcd4c9d0b1b1861183e28f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
 /*@@
   @file      GRHydro_RoeSolver.F90
   @date      Sat Jan 26 01:55:27 2002
   @author    
   @desc 
   Calculates the Roe flux
   @enddesc 
 @@*/

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_Functions.h"
#include "GRHydro_Macros.h"

#include "SpaceMask.h"

 /*@@
   @routine    GRHydro_RoeSolve
   @date       Sat Jan 26 01:55:55 2002
   @author     Pedro Montero, Ian Hawke
   @desc 
   Wrapper routine to calculate the Roe fluxes and hence the update 
   terms.
   @enddesc 
   @calls     
   @calledby   
   @history 
   
   @endhistory 

@@*/

subroutine GRHydro_RoeSolve(CCTK_ARGUMENTS)
  
  USE GRHydro_Eigenproblem
  implicit none
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  CCTK_REAL, dimension(5) :: roeflux,roeave,qdiff,consp,consm_i,&
       fplus,fminus,f_roe,primp,primm_i,consh
  CCTK_REAL :: avg_alp,avg_beta,gxxh,gxyh,gxzh,gyyh,gyzh,gzzh, &
       avg_det,uxxh,uxyh,uxzh,uyyh,uyzh,uzzh,&
       rhoave, velxave, velyave, velzave, pressave, epsave, &
       w_lorentzave, usendh, alp_l, alp_r, psi4h
  integer :: m
  integer :: i,j,k
  
  CCTK_INT :: type_bits, trivial, not_trivial

  if (flux_direction == 1) then
    call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemX")
    call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemX", &
         &"trivial")
  else if (flux_direction == 2) then
    call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemY")
    call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemY", &
         &"trivial")
  else if (flux_direction == 3) then
    call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemZ")
    call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemZ", &
         &"trivial")
  else
    call CCTK_WARN(0, "Flux direction not x,y,z")
  end if
  
  f_roe = 0.d0
  
  do k = GRHydro_stencil, cctk_lsh(3) - GRHydro_stencil
    do j = GRHydro_stencil, cctk_lsh(2) - GRHydro_stencil
      do i = GRHydro_stencil, cctk_lsh(1) - GRHydro_stencil

!!$        Set the left (p for plus) and right (m_i for minus, i+1) states
        
        consp(1)   = densplus(i,j,k) 
        consp(2)   = sxplus(i,j,k)
        consp(3)   = syplus(i,j,k)
        consp(4)   = szplus(i,j,k)
        consp(5)   = tauplus(i,j,k)
        
        consm_i(1) = densminus(i+xoffset,j+yoffset,k+zoffset)
        consm_i(2) = sxminus(i+xoffset,j+yoffset,k+zoffset)
        consm_i(3) = syminus(i+xoffset,j+yoffset,k+zoffset)
        consm_i(4) = szminus(i+xoffset,j+yoffset,k+zoffset)
        consm_i(5) = tauminus(i+xoffset,j+yoffset,k+zoffset) 
        
        primp(1)   = rhoplus(i,j,k) 
        primp(2)   = velxplus(i,j,k)
        primp(3)   = velyplus(i,j,k)
        primp(4)   = velzplus(i,j,k)
        primp(5)   = epsplus(i,j,k)
        
        primm_i(1) = rhominus(i+xoffset,j+yoffset,k+zoffset)
        primm_i(2) = velxminus(i+xoffset,j+yoffset,k+zoffset)
        primm_i(3) = velyminus(i+xoffset,j+yoffset,k+zoffset)
        primm_i(4) = velzminus(i+xoffset,j+yoffset,k+zoffset)
        primm_i(5) = epsminus(i+xoffset,j+yoffset,k+zoffset) 
        
        roeflux = 0.d0
        qdiff = 0.d0

!!$        Calculate jumps in conserved variables
        
        do m = 1,5
          qdiff(m) = consm_i(m) - consp(m)
        end do

!!$        Set metric terms at interface
        
        if (shift_state .ne. 0) then
          if (flux_direction == 1) then
            avg_beta = 0.5d0 * (betax(i+xoffset,j+yoffset,k+zoffset) + &
                 betax(i,j,k))
          else if (flux_direction == 2) then
            avg_beta = 0.5d0 * (betay(i+xoffset,j+yoffset,k+zoffset) + &
                 betay(i,j,k))
          else if (flux_direction == 3) then
            avg_beta = 0.5d0 * (betaz(i+xoffset,j+yoffset,k+zoffset) + &
                 betaz(i,j,k))
          else
            call CCTK_WARN(0, "Flux direction not x,y,z")
          end if
        else
          avg_beta = 0.d0
        end if
        
        avg_alp = 0.5 * (alp(i,j,k) + alp(i+xoffset,j+yoffset,k+zoffset))
        
        gxxh = 0.5d0 * (gxx(i+xoffset,j+yoffset,k+zoffset) + &
             gxx(i,j,k))
        gxyh = 0.5d0 * (gxy(i+xoffset,j+yoffset,k+zoffset) + &
             gxy(i,j,k))
        gxzh = 0.5d0 * (gxz(i+xoffset,j+yoffset,k+zoffset) + &
             gxz(i,j,k))
        gyyh = 0.5d0 * (gyy(i+xoffset,j+yoffset,k+zoffset) + &
             gyy(i,j,k))
        gyzh = 0.5d0 * (gyz(i+xoffset,j+yoffset,k+zoffset) + &
             gyz(i,j,k))
        gzzh = 0.5d0 * (gzz(i+xoffset,j+yoffset,k+zoffset) + &
             gzz(i,j,k))
        
        avg_det = SPATIAL_DETERMINANT(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh)
        
!!$ If the Riemann problem is trivial, just calculate the fluxes from the 
!!$ left state and skip to the next cell
          
        if (SpaceMask_CheckStateBitsF90(space_mask, i, j, k, type_bits, trivial)) then

          if (flux_direction == 1) then
            call num_x_flux(consp(1),consp(2),consp(3),consp(4),consp(5),&
                 f_roe(1),f_roe(2),f_roe(3),&
                 f_roe(4),f_roe(5),&
                 velxplus(i,j,k),pressplus(i,j,k),&
                 avg_det,avg_alp,avg_beta)
          else if (flux_direction == 2) then
            call num_x_flux(consp(1),consp(3),consp(4),consp(2),consp(5),&
                 f_roe(1),f_roe(3),f_roe(4),&
                 f_roe(2),f_roe(5),&
                 velyplus(i,j,k),pressplus(i,j,k),&
                 avg_det,avg_alp,avg_beta)
          else if (flux_direction == 3) then
            call num_x_flux(consp(1),consp(4),consp(2),consp(3),consp(5),&
                 f_roe(1),f_roe(4),f_roe(2),&
                 f_roe(3),f_roe(5),&
                 velzplus(i,j,k),pressplus(i,j,k),&
                 avg_det,avg_alp,avg_beta)
          else
            call CCTK_WARN(0, "Flux direction not x,y,z")
          end if
            
        else !!! The end of this branch is right at the bottom of the routine

          call UpperMetric(uxxh, uxyh, uxzh, uyyh, uyzh, uzzh, &
               avg_det,gxxh, gxyh, gxzh, gyyh, gyzh, gzzh)
        
          if (flux_direction == 1) then
            usendh = uxxh
          else if (flux_direction == 2) then
            usendh = uyyh
          else if (flux_direction == 3) then
            usendh = uzzh
          else
            call CCTK_WARN(0, "Flux direction not x,y,z")
          end if
          
!!$        Set the Roe average of the fluid variables
        
          call roeaverage(primp, primm_i, roeave)
        
          rhoave = roeave(1)
          velxave = roeave(2)
          velyave = roeave(3)
          velzave = roeave(4)
          epsave = roeave(5)

!!$        Convert to conserved variables and find the part of the Roe
!!$        flux that requires the spectral decomposition.
!!$        The conversion to conserved variables is just to set the 
!!$        pressure at this point (means this routine doesn''t need
!!$        the EOS interface).

!!$        The conversion routine is unnecessary (the pressure is set
!!$        inside the eigenproblem routine) so instead we just have
!!$        to set the average W.

          w_lorentzave = 1.d0 / &
               sqrt(1.d0 - &
                 (gxxh*velxave*velxave + gyyh*velyave*velyave + &
                  gzzh*velzave*velzave + 2*gxyh*velxave*velyave + &
                  2*gxzh*velxave *velzave + 2*gyzh*velyave*velzave))  

          if (flux_direction == 1) then
!!$            call prim2con(GRHydro_eos_handle,gxxh, gxyh, gxzh, gyyh, &
!!$                 gyzh, gzzh, avg_det, &
!!$                 consh(1), consh(2), consh(3), consh(4), consh(5), rhoave, &
!!$                 velxave, velyave, velzave, epsave, pressave, w_lorentzave)
            call eigenproblem(GRHydro_eos_handle,rhoave, velxave, &
                 velyave, velzave, epsave, w_lorentzave, &
                 gxxh,gxyh,gxzh,gyyh,gyzh,gzzh, &
                 usendh, avg_alp,avg_beta,qdiff(1),qdiff(2), &
                 qdiff(3),qdiff(4),qdiff(5),roeflux(1),roeflux(2),&
                 roeflux(3),roeflux(4),roeflux(5))
          else if (flux_direction == 2) then
!!$            call prim2con(GRHydro_eos_handle,gyyh, gyzh, gxyh, gzzh, &
!!$                 gxzh, gxxh, avg_det, &
!!$                 consh(1), consh(3), consh(4), consh(2), consh(5), rhoave, &
!!$                 velyave, velzave, velxave, epsave, pressave, w_lorentzave)
            call eigenproblem(GRHydro_eos_handle,rhoave, velyave, &
                 velzave, velxave, epsave, w_lorentzave, &
                 gyyh,gyzh,gxyh,gzzh,gxzh,gxxh, &
                 usendh, avg_alp,avg_beta,qdiff(1),qdiff(3), &
                 qdiff(4),qdiff(2),qdiff(5),roeflux(1),roeflux(3),&
                 roeflux(4),roeflux(2),roeflux(5))
          else if (flux_direction == 3) then
!!$            call prim2con(GRHydro_eos_handle,gzzh, gxzh, gyzh, gxxh, &
!!$                 gxyh, gyyh, avg_det, &
!!$                 consh(1), consh(4), consh(2), consh(3), consh(5), rhoave, &
!!$                 velzave, velxave, velyave, epsave, pressave, w_lorentzave)
            call eigenproblem(GRHydro_eos_handle,rhoave, velzave, &
                 velxave, velyave, epsave, w_lorentzave, &
                 gzzh,gxzh,gyzh,gxxh,gxyh,gyyh, &
                 usendh, avg_alp,avg_beta,qdiff(1),qdiff(4), &
                 qdiff(2),qdiff(3),qdiff(5),roeflux(1),roeflux(4),&
                 roeflux(2),roeflux(3),roeflux(5))
          else
            call CCTK_WARN(0, "Flux direction not x,y,z")
          end if
          
          fplus = 0.d0
          fminus = 0.d0
        
!!$Calculate the fluxes of the original reconstructed data
        
          if (flux_direction == 1) then
            call num_x_flux(consp(1),consp(2),consp(3),consp(4),consp(5), &
                 fplus(1),fplus(2),fplus(3),fplus(4), &
                 fplus(5),velxplus(i,j,k),pressplus(i,j,k), &
                 avg_det,avg_alp,avg_beta)
            call num_x_flux(consm_i(1),consm_i(2),consm_i(3), &
                 consm_i(4),consm_i(5),fminus(1),fminus(2),fminus(3), &
                 fminus(4), fminus(5), &
                 velxminus(i+xoffset,j+yoffset,k+zoffset), &
                 pressminus(i+xoffset,j+yoffset,k+zoffset), &
                 avg_det,avg_alp,avg_beta)
          else if (flux_direction == 2) then
            call num_x_flux(consp(1),consp(3),consp(4),consp(2),consp(5), &
                 fplus(1),fplus(3),fplus(4),fplus(2), &
                 fplus(5),velyplus(i,j,k),pressplus(i,j,k), &
                 avg_det,avg_alp,avg_beta)
            call num_x_flux(consm_i(1),consm_i(3),consm_i(4), &
                 consm_i(2),consm_i(5),fminus(1),fminus(3),fminus(4), &
                 fminus(2), fminus(5), &
                 velyminus(i+xoffset,j+yoffset,k+zoffset), &
                 pressminus(i+xoffset,j+yoffset,k+zoffset), &
                 avg_det,avg_alp,avg_beta)
          else if (flux_direction == 3) then
            call num_x_flux(consp(1),consp(4),consp(2),consp(3),consp(5), &
                 fplus(1),fplus(4),fplus(2),fplus(3), &
                 fplus(5),velzplus(i,j,k),pressplus(i,j,k),avg_det, &
                 avg_alp,avg_beta)
            call num_x_flux(consm_i(1),consm_i(4),consm_i(2), &
                 consm_i(3),consm_i(5),fminus(1),fminus(4),fminus(2), &
                 fminus(3), fminus(5), &
                 velzminus(i+xoffset,j+yoffset,k+zoffset), &
                 pressminus(i+xoffset,j+yoffset,k+zoffset), &
                 avg_det,avg_alp,avg_beta)
          else
            call CCTK_WARN(0, "Flux direction not x,y,z")
          end if
        
!!$The combined Roe flux          
        
          do m = 1,5
          
            f_roe(m) = 0.5d0 * (fplus(m) + fminus(m) - roeflux(m))
          
          end do

        end if !!! The end of the SpaceMask check for a trivial RP.
        
        densflux(i,j,k) = f_roe(1)
        sxflux(i,j,k)   = f_roe(2)
        syflux(i,j,k)   = f_roe(3)
        szflux(i,j,k)   = f_roe(4)
        tauflux(i,j,k)  = f_roe(5)

      enddo
    enddo
  enddo
    
end subroutine GRHydro_RoeSolve

 /*@@
   @routine    GRHydro_RoeSolveGeneral
   @date       Sat Jan 26 01:55:55 2002
   @author     Pedro Montero, Ian Hawke
   @desc 
   Wrapper routine to calculate the Roe fluxes and hence the update 
   terms.
   @enddesc 
   @calls     
   @calledby   
   @history 
   
   @endhistory 

@@*/

subroutine GRHydro_RoeSolveGeneral(CCTK_ARGUMENTS)
  
  USE GRHydro_Scalars
  use GRHydro_Eigenproblem

  implicit none

  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_FUNCTIONS

  CCTK_REAL, dimension(5) :: roeflux,roeave,qdiff,cons_p,cons_m,&
       cons_ave
  CCTK_REAL, dimension(6) :: prim_p, prim_m, prim_ave
  CCTK_REAL :: avg_alp,avg_beta,gxxh,gxyh,gxzh,gyyh,gyzh,gzzh, &
       avg_det,uxxh,uxyh,uxzh,uyyh,uyzh,uzzh,&
       usendh,alp_l,alp_r,psi4h,cs2_ave,dpdeps_ave
  CCTK_INT :: i,j,k,m
  
  CCTK_INT :: type_bits, trivial, not_trivial, ierr

  if (flux_direction == 1) then
    call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemX")
    call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemX", &
         &"trivial")
  else if (flux_direction == 2) then
    call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemY")
    call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemY", &
         &"trivial")
  else if (flux_direction == 3) then
    call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemZ")
    call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemZ", &
         &"trivial")
  else
    call CCTK_WARN(0, "Flux direction not x,y,z")
  end if
  
  do k = GRHydro_stencil, cctk_lsh(3) - GRHydro_stencil
    do j = GRHydro_stencil, cctk_lsh(2) - GRHydro_stencil
      do i = GRHydro_stencil, cctk_lsh(1) - GRHydro_stencil

!!$        Set the left (p for plus) and right (m_i for minus, i+1) states
        
        cons_p(1)   = densplus(i,j,k) 
        cons_p(2)   = sxplus(i,j,k)
        cons_p(3)   = syplus(i,j,k)
        cons_p(4)   = szplus(i,j,k)
        cons_p(5)   = tauplus(i,j,k)
        
        cons_m(1) = densminus(i+xoffset,j+yoffset,k+zoffset)
        cons_m(2) = sxminus(i+xoffset,j+yoffset,k+zoffset)
        cons_m(3) = syminus(i+xoffset,j+yoffset,k+zoffset)
        cons_m(4) = szminus(i+xoffset,j+yoffset,k+zoffset)
        cons_m(5) = tauminus(i+xoffset,j+yoffset,k+zoffset) 
        
        prim_p(1)   = rhoplus(i,j,k) 
        prim_p(2)   = velxplus(i,j,k)
        prim_p(3)   = velyplus(i,j,k)
        prim_p(4)   = velzplus(i,j,k)
        prim_p(5)   = epsplus(i,j,k)
        
        prim_m(1) = rhominus(i+xoffset,j+yoffset,k+zoffset)
        prim_m(2) = velxminus(i+xoffset,j+yoffset,k+zoffset)
        prim_m(3) = velyminus(i+xoffset,j+yoffset,k+zoffset)
        prim_m(4) = velzminus(i+xoffset,j+yoffset,k+zoffset)
        prim_m(5) = epsminus(i+xoffset,j+yoffset,k+zoffset) 
        
        prim_p(6) = pressplus(i,j,k)

        prim_m(6) = pressminus(i+xoffset,j+yoffset,k+zoffset)

!!$        Set the Roe average of the fluid variables
        
        call roeaverage(prim_p(1:5), prim_m(1:5), roeave)
        
        rho_ave(i,j,k)  = roeave(1)
        velx_ave(i,j,k) = roeave(2)
        vely_ave(i,j,k) = roeave(3)
        velz_ave(i,j,k) = roeave(4)
        eps_ave(i,j,k)  = roeave(5)

      end do
    end do
  end do
  
  ierr = EOS_SetGFs(cctkGH, EOS_RoeAverageCall)
  
  do k = GRHydro_stencil, cctk_lsh(3) - GRHydro_stencil
    do j = GRHydro_stencil, cctk_lsh(2) - GRHydro_stencil
      do i = GRHydro_stencil, cctk_lsh(1) - GRHydro_stencil

!!$        Set the left (p for plus) and right (m_i for minus, i+1) states
        
        cons_p(1)   = densplus(i,j,k) 
        cons_p(2)   = sxplus(i,j,k)
        cons_p(3)   = syplus(i,j,k)
        cons_p(4)   = szplus(i,j,k)
        cons_p(5)   = tauplus(i,j,k)
        
        cons_m(1) = densminus(i+xoffset,j+yoffset,k+zoffset)
        cons_m(2) = sxminus(i+xoffset,j+yoffset,k+zoffset)
        cons_m(3) = syminus(i+xoffset,j+yoffset,k+zoffset)
        cons_m(4) = szminus(i+xoffset,j+yoffset,k+zoffset)
        cons_m(5) = tauminus(i+xoffset,j+yoffset,k+zoffset) 

        prim_ave(1)   = rho_ave(i,j,k) 
        prim_ave(2)   = velx_ave(i,j,k)
        prim_ave(3)   = vely_ave(i,j,k)
        prim_ave(4)   = velz_ave(i,j,k)
        prim_ave(5)   = eps_ave(i,j,k)
        prim_ave(6)   = press_ave(i,j,k)
        cs2_ave       = eos_cs2_ave(i,j,k)
        dpdeps_ave    = eos_dpdeps_ave(i,j,k)

        roeflux = 0.d0
        qdiff = 0.d0

!!$        Calculate jumps in conserved variables
        
        do m = 1,5
          qdiff(m) = cons_m(m) - cons_p(m)
        end do

!!$        Set metric terms at interface
        
        if (shift_state .ne. 0) then
          if (flux_direction == 1) then
            avg_beta = 0.5d0 * (betax(i+xoffset,j+yoffset,k+zoffset) + &
                 betax(i,j,k))
          else if (flux_direction == 2) then
            avg_beta = 0.5d0 * (betay(i+xoffset,j+yoffset,k+zoffset) + &
                 betay(i,j,k))
          else if (flux_direction == 3) then
            avg_beta = 0.5d0 * (betaz(i+xoffset,j+yoffset,k+zoffset) + &
                 betaz(i,j,k))
          else
            call CCTK_WARN(0, "Flux direction not x,y,z")
          end if
        else
          avg_beta = 0.d0
        end if
        
        avg_alp = 0.5 * (alp(i,j,k) + alp(i+xoffset,j+yoffset,k+zoffset))
        
        gxxh = 0.5d0 * (gxx(i+xoffset,j+yoffset,k+zoffset) + &
             gxx(i,j,k))
        gxyh = 0.5d0 * (gxy(i+xoffset,j+yoffset,k+zoffset) + &
             gxy(i,j,k))
        gxzh = 0.5d0 * (gxz(i+xoffset,j+yoffset,k+zoffset) + &
             gxz(i,j,k))
        gyyh = 0.5d0 * (gyy(i+xoffset,j+yoffset,k+zoffset) + &
             gyy(i,j,k))
        gyzh = 0.5d0 * (gyz(i+xoffset,j+yoffset,k+zoffset) + &
             gyz(i,j,k))
        gzzh = 0.5d0 * (gzz(i+xoffset,j+yoffset,k+zoffset) + &
             gzz(i,j,k))

        avg_det = SPATIAL_DETERMINANT(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh)
        
!!$ If the Riemann problem is trivial the flux is already correct
          
        if (SpaceMask_CheckStateBitsF90(space_mask, i, j, k, type_bits, trivial)) then
            
        else !!! The end of this branch is right at the bottom of the routine

          call UpperMetric(uxxh, uxyh, uxzh, uyyh, uyzh, uzzh, &
               avg_det,gxxh, gxyh, gxzh, gyyh, gyzh, gzzh)
        
          if (flux_direction == 1) then
            usendh = uxxh
          else if (flux_direction == 2) then
            usendh = uyyh
          else if (flux_direction == 3) then
            usendh = uzzh
          else
            call CCTK_WARN(0, "Flux direction not x,y,z")
          end if
          
!!$        Convert to conserved variables and find the part of the Roe
!!$        flux that requires the spectral decomposition.
!!$        The conversion to conserved variables is just to set the 
!!$        pressure at this point (means this routine doesn''t need
!!$        the EOS interface).

          if (flux_direction == 1) then
            call eigenproblem_general(&
                 prim_ave(1),prim_ave(2),prim_ave(3),prim_ave(4),prim_ave(5), &
                 prim_ave(6),cs2_ave,dpdeps_ave, &
                 gxxh,gxyh,gxzh,gyyh,gyzh,gzzh, &
                 usendh,avg_alp,avg_beta, &
                 qdiff(1),qdiff(2),qdiff(3),qdiff(4),qdiff(5), &
                 roeflux(1),roeflux(2),roeflux(3),roeflux(4),roeflux(5))
          else if (flux_direction == 2) then
            call eigenproblem_general(&
                 prim_ave(1),prim_ave(3),prim_ave(4),prim_ave(2),prim_ave(5), &
                 prim_ave(6),cs2_ave,dpdeps_ave, &
                 gyyh,gyzh,gxyh,gzzh,gxzh,gxxh, &
                 usendh,avg_alp,avg_beta, &
                 qdiff(1),qdiff(3),qdiff(4),qdiff(2),qdiff(5), &
                 roeflux(1),roeflux(3),roeflux(4),roeflux(2),roeflux(5))
          else if (flux_direction == 3) then
            call eigenproblem_general(&
                 prim_ave(1),prim_ave(4),prim_ave(2),prim_ave(3),prim_ave(5), &
                 prim_ave(6),cs2_ave,dpdeps_ave, &
                 gzzh,gxzh,gyzh,gxxh,gxyh,gyyh, &
                 usendh,avg_alp,avg_beta, &
                 qdiff(1),qdiff(4),qdiff(2),qdiff(3),qdiff(5), &
                 roeflux(1),roeflux(4),roeflux(2),roeflux(3),roeflux(5))
          else
            call CCTK_WARN(0, "Flux direction not x,y,z")
          end if
                  
!!$ Roe flux
          
          densflux(i,j,k) = densflux(i,j,k) - 0.5d0 * roeflux(1)
          sxflux(i,j,k)   = sxflux(i,j,k)   - 0.5d0 * roeflux(2)
          syflux(i,j,k)   = syflux(i,j,k)   - 0.5d0 * roeflux(3)
          szflux(i,j,k)   = szflux(i,j,k)   - 0.5d0 * roeflux(4)
          tauflux(i,j,k)  = tauflux(i,j,k)  - 0.5d0 * roeflux(5)

        end if !!! The end of the SpaceMask check for a trivial RP.

      enddo
    enddo
  enddo
    
end subroutine GRHydro_RoeSolveGeneral