aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_RiemannSolveM.F90
blob: 8944b265b6cd6c70b669a596ac47478c34b9af4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
 /*@@
   @file      GRHydro_RiemannSolveM.F90
   @date      Sep 1, 2010
   @author    
   @desc 
   A wrapper routine to call the correct Riemann solver
   @enddesc 
 @@*/

#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"
#include "cctk_Functions.h"
#include "GRHydro_Macros.h"

 /*@@
   @routine    RiemannSolveM
   @date       Sep 1, 2010
   @author     Joshua Faber, Scott Noble, Bruno Mundim, Pedro Montero, Ian Hawke
   @desc 
   A wrapper routine to switch between the different Riemann solvers.
   @enddesc 
   @calls     
   @calledby   
   @history 
 
   @endhistory 

@@*/

subroutine RiemannSolveM(CCTK_ARGUMENTS)

  implicit none
  
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_FUNCTIONS

  CCTK_INT :: i,j,k
  
  if (CCTK_EQUALS(riemann_solver,"HLLE")) then
     
     call GRHydro_HLLEM(CCTK_PASS_FTOF)
     
     if (evolve_tracer .ne. 0) then
        
!!$ There are no special calls for tracers, which care not one whit about B-fields!    
!!$ Just call the standard version...
        
        call GRHydro_HLLE_Tracer(CCTK_PASS_FTOF)
        
     end if
     
!!$  else if (CCTK_EQUALS(riemann_solver,"Roe")) then   
!!$    
!!$    call GRHydro_RoeSolveM(CCTK_PASS_FTOF)
!!$
!!$    if (evolve_tracer .ne. 0) then
!!$    
!!$      call GRHydro_HLLE_Tracer(CCTK_PASS_FTOF)
!!$
!!$    end if
!!$    
!!$  else if (CCTK_EQUALS(riemann_solver,"Marquina")) then   
!!$   
!!$    call GRHydro_MarquinaM(CCTK_PASS_FTOF)
     
!!$    Tracers are built directly in to the Marquina solver
     
  else
     
     call CCTK_WARN(0, "Roe and Marquina not implemented in MHD yet!!!")
     
  end if
  
end subroutine RiemannSolveM

 /*@@
   @routine    RiemannSolvePolytypeM
   @date       Sep 1, 2010
   @author     Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke
   @desc 
   The same as above, just specializing to polytropic type EOS.
   Currently there is no point to this routine right now.
   @enddesc 
   @calls     
   @calledby   
   @history 
 
   @endhistory 

@@*/


subroutine RiemannSolvePolytypeM(CCTK_ARGUMENTS)

  implicit none
  
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_FUNCTIONS

  CCTK_INT :: i,j,k
  
  if (CCTK_EQUALS(riemann_solver,"HLLE")) then
    
     call GRHydro_HLLEM(CCTK_PASS_FTOF)
     
     if (evolve_tracer .ne. 0) then
        
!!$ Call the non-MHD version - see above
        
        call GRHydro_HLLE_Tracer(CCTK_PASS_FTOF)
        
     end if
     
!!$  else if (CCTK_EQUALS(riemann_solver,"Roe")) then   
!!$    
!!$    call GRHydro_RoeSolve(CCTK_PASS_FTOF)
!!$
!!$    if (evolve_tracer .ne. 0) then
!!$    
!!$      call GRHydro_HLLE_Tracer(CCTK_PASS_FTOF)
!!$
!!$    end if
!!$    
!!$  else if (CCTK_EQUALS(riemann_solver,"Marquina")) then   
!!$    
!!$    call GRHydro_Marquina(CCTK_PASS_FTOF)
     
!!$    Tracers are built directly in to the Marquina solver
     
  else
     
     call CCTK_WARN(0, "Roe and Marquina not implemented in MHD yet!!!")

  end if
  
end subroutine RiemannSolvePolytypeM



/*@@
@routine    RiemannSolveGeneralM
@date       Tue Mar 19 11:40:20 2002
@author     Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke
@desc 
The Riemann solvers for the new general EOS routines.
This sets the fluxes from the left and right reconstructed
states, so that after this routine they are effectively 
scratch space.
@enddesc 
@calls     
@calledby   
@history 

@endhistory 

@@*/


subroutine RiemannSolveGeneralM(CCTK_ARGUMENTS)
  
  USE GRHydro_Scalars
  
  implicit none
  
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_FUNCTIONS

  CCTK_INT :: i,j,k, ierr
  CCTK_REAL, dimension(8) :: tmp_flux, cons_p, cons_m
  CCTK_REAL, dimension(6) :: prim_p, prim_m
  CCTK_REAL :: avg_det, avg_alp, avg_beta
  CCTK_REAL :: gxxh, gyyh, gzzh, gxyh, gxzh, gyzh
  CCTK_REAL :: avg_betax, avg_betay, avg_betaz
  CCTK_REAL :: vxtp,vytp,vztp,vxtm,vytm,vztm,ab0p,ab0m,b2p,b2m,bdotvp,bdotvm
  CCTK_REAL :: wp,wm,v2p,v2m,bxlowp,bxlowm,bylowp,bylowm,bzlowp,bzlowm,vA2m,vA2p
  CCTK_REAL :: Bvecxlowp,Bvecxlowm,Bvecylowp,Bvecylowm,Bveczlowp,Bveczlowm
  CCTK_REAL :: pressstarp,pressstarm,rhoenth_p,rhoenth_m
  CCTK_REAL :: velxlowp,velxlowm,velylowp,velylowm,velzlowp,velzlowm

  CCTK_REAL :: psidcp, psidcm, psidcf, psidcdiff, psidcfp, psidcfm

  densflux = 0.d0
  sxflux   = 0.d0
  syflux   = 0.d0
  szflux   = 0.d0
  tauflux  = 0.d0
  Bvecxflux = 0.d0
  Bvecyflux = 0.d0
  Bveczflux = 0.d0
  if(clean_divergence.ne.0) then
     psidcflux = 0.d0
  endif

!!$  Do the EOS call to set the pressure, derivative and cs2

  ierr = EOS_SetGFs(cctkGH, EOS_RiemannCallPlus)
  ierr = EOS_SetGFs(cctkGH, EOS_RiemannCallMinus)


  if (CCTK_EQUALS(riemann_solver,"HLLE")) then
     
     call GRHydro_HLLEGeneralM(CCTK_PASS_FTOF)
     
     if (evolve_tracer .ne. 0) then
        
!!$ No b-field component for tracers!
        call GRHydro_HLLE_TracerGeneral(CCTK_PASS_FTOF)
        
     end if
     
  else
     
     do k = GRHydro_stencil, cctk_lsh(3) - GRHydro_stencil
        do j = GRHydro_stencil, cctk_lsh(2) - GRHydro_stencil
           do i = GRHydro_stencil, cctk_lsh(1) - GRHydro_stencil        
              
!!$        Set the left (p for plus) and right (m for minus, i+1) states
              
              cons_p(1)   = densplus(i,j,k) 
              cons_p(2)   = sxplus(i,j,k)
              cons_p(3)   = syplus(i,j,k)
              cons_p(4)   = szplus(i,j,k)
              cons_p(5)   = tauplus(i,j,k)
              cons_p(6)   = Bvecxplus(i,j,k)
              cons_p(7)   = Bvecyplus(i,j,k)
              cons_p(8)   = Bveczplus(i,j,k)
              
              cons_m(1) = densminus(i+xoffset,j+yoffset,k+zoffset)
              cons_m(2) = sxminus(i+xoffset,j+yoffset,k+zoffset)
              cons_m(3) = syminus(i+xoffset,j+yoffset,k+zoffset)
              cons_m(4) = szminus(i+xoffset,j+yoffset,k+zoffset)
              cons_m(5) = tauminus(i+xoffset,j+yoffset,k+zoffset) 
              cons_m(6) = Bvecxminus(i+xoffset,j+yoffset,k+zoffset)
              cons_m(7) = Bvecyminus(i+xoffset,j+yoffset,k+zoffset)
              cons_m(8) = Bveczminus(i+xoffset,j+yoffset,k+zoffset)
              
              prim_p(1)   = rhoplus(i,j,k) 
              prim_p(2)   = velxplus(i,j,k)
              prim_p(3)   = velyplus(i,j,k) 
              prim_p(4)   = velzplus(i,j,k)
              prim_p(5)   = epsplus(i,j,k)
              prim_p(6)   = pressplus(i,j,k)
              rhoenth_p    = prim_p(1)*(1.0d0+prim_p(5))+prim_p(6)
              
              prim_m(1) = rhominus(i+xoffset,j+yoffset,k+zoffset)
              prim_m(2) = velxminus(i+xoffset,j+yoffset,k+zoffset)
              prim_m(3) = velyminus(i+xoffset,j+yoffset,k+zoffset)
              prim_m(4) = velzminus(i+xoffset,j+yoffset,k+zoffset)
              prim_m(5) = epsminus(i+xoffset,j+yoffset,k+zoffset) 
              prim_m(6) = pressminus(i+xoffset,j+yoffset,k+zoffset) 
              rhoenth_m    = prim_m(1)*(1.0d0+prim_m(5))+prim_m(6)

              if(clean_divergence.ne.0) then
                 psidcp = psidcplus(i,j,k)
                 psidcm = psidcminus(i+xoffset,j+yoffset,k+zoffset)
              endif
             
!!$        Set metric terms at interface
              
              if (shift_state .ne. 0) then
                 avg_betax = 0.5d0*(betax(i+xoffset,j+yoffset,k+zoffset)+betax(i,j,k))
                 avg_betay = 0.5d0*(betay(i+xoffset,j+yoffset,k+zoffset)+betay(i,j,k))
                 avg_betaz = 0.5d0*(betaz(i+xoffset,j+yoffset,k+zoffset)+betaz(i,j,k))
                 if (flux_direction == 1) then
                    avg_beta = avg_betax
                 else if (flux_direction == 2) then
                    avg_beta = avg_betay
                 else if (flux_direction == 3) then
                    avg_beta = avg_betaz
                 else
                    call CCTK_WARN(0, "Flux direction not x,y,z")
                 end if
              else
                 avg_beta = 0.d0
                 avg_betax = 0.d0
                 avg_betay = 0.d0
                 avg_betaz = 0.d0
              end if
              
              avg_alp = 0.5 * (alp(i,j,k) + alp(i+xoffset,j+yoffset,k+zoffset))
              
              gxxh = 0.5d0 * (gxx(i+xoffset,j+yoffset,k+zoffset) + &
                   gxx(i,j,k))
              gxyh = 0.5d0 * (gxy(i+xoffset,j+yoffset,k+zoffset) + &
                   gxy(i,j,k))
              gxzh = 0.5d0 * (gxz(i+xoffset,j+yoffset,k+zoffset) + &
                   gxz(i,j,k))
              gyyh = 0.5d0 * (gyy(i+xoffset,j+yoffset,k+zoffset) + &
                   gyy(i,j,k))
              gyzh = 0.5d0 * (gyz(i+xoffset,j+yoffset,k+zoffset) + &
                   gyz(i,j,k))
              gzzh = 0.5d0 * (gzz(i+xoffset,j+yoffset,k+zoffset) + &
                   gzz(i,j,k))
              
              avg_det = SPATIAL_DETERMINANT(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh)
              
              vxtp = prim_p(2)-avg_betax/avg_alp
              vytp = prim_p(3)-avg_betay/avg_alp
              vztp = prim_p(4)-avg_betaz/avg_alp
              vxtm = prim_m(2)-avg_betax/avg_alp
              vytm = prim_m(3)-avg_betay/avg_alp
              vztm = prim_m(4)-avg_betaz/avg_alp
              
              call calc_vlow_blow(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh, &
                   prim_p(2),prim_p(3),prim_p(4),cons_p(6),cons_p(7),cons_p(8), &
                   velxlowp,velylowp,velzlowp,Bvecxlowp,Bvecylowp,Bveczlowp, &
                   bdotvp,b2p,v2p,wp,bxlowp,bylowp,bzlowp)
              call calc_vlow_blow(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh, &
                   prim_m(2),prim_m(3),prim_m(4),cons_m(6),cons_m(7),cons_m(8), &
                   velxlowm,velylowm,velzlowm,Bvecxlowm,Bvecylowm,Bveczlowm, &
                   bdotvm,b2m,v2m,wm,bxlowm,bylowm,bzlowm)
              
              ab0p = wp*bdotvp
              ab0m = wm*bdotvm
              
              vA2p = b2p/(rhoenth_p+b2p)
              vA2m = b2m/(rhoenth_m+b2m)
              
!!$ p^*  = p+b^2/2  in Anton et al.
              pressstarp = prim_p(6)+0.5d0*b2p
              pressstarm = prim_m(6)+0.5d0*b2m        
              
              if (flux_direction == 1) then
                 
                 call num_x_fluxM(cons_p(1),cons_p(2),cons_p(3),cons_p(4),cons_p(5),&
                      cons_p(6),cons_p(7),cons_p(8),&
                      tmp_flux(1),tmp_flux(2),tmp_flux(3),tmp_flux(4),tmp_flux(5), &
                      tmp_flux(6),tmp_flux(7),tmp_flux(8), &
                      vxtp,vytp,vztp,pressstarp,bxlowp,bylowp,bzlowp,ab0p,wp, &
                      avg_det,avg_alp,avg_beta)

                 densflux(i,j,k) = 0.5d0 * tmp_flux(1)
                 sxflux(i,j,k)   = 0.5d0 * tmp_flux(2)
                 syflux(i,j,k)   = 0.5d0 * tmp_flux(3)
                 szflux(i,j,k)   = 0.5d0 * tmp_flux(4)
                 tauflux(i,j,k)  = 0.5d0 * tmp_flux(5)
                 Bvecxflux(i,j,k)   = 0.5d0 * tmp_flux(6)
                 Bvecyflux(i,j,k)   = 0.5d0 * tmp_flux(7)
                 Bveczflux(i,j,k)   = 0.5d0 * tmp_flux(8)

                 if(clean_divergence.ne.0) then
                    psidcf = cons_p(6)
                    psidcflux(i,j,k) = 0.5d0 * psidcf
                 endif
                 
                 call num_x_fluxM(cons_m(1),cons_m(2),cons_m(3),cons_m(4),cons_m(5),&
                      cons_m(6),cons_m(7),cons_m(8),&
                      tmp_flux(1),tmp_flux(2),tmp_flux(3),tmp_flux(4),tmp_flux(5),&
                      tmp_flux(6),tmp_flux(7),tmp_flux(8),&
                      vxtm,vytm,vztm,pressstarm,bxlowm,bylowm,bzlowm,ab0m,wm, &
                      avg_det,avg_alp,avg_beta)

                 densflux(i,j,k) = densflux(i,j,k) + 0.5d0 * tmp_flux(1)
                 sxflux(i,j,k)   = sxflux(i,j,k)   + 0.5d0 * tmp_flux(2)
                 syflux(i,j,k)   = syflux(i,j,k)   + 0.5d0 * tmp_flux(3)
                 szflux(i,j,k)   = szflux(i,j,k)   + 0.5d0 * tmp_flux(4)
                 tauflux(i,j,k)  = tauflux(i,j,k)  + 0.5d0 * tmp_flux(5)
                 Bvecxflux(i,j,k)= Bvecxflux(i,j,k)+ 0.5d0 * tmp_flux(6)
                 Bvecyflux(i,j,k)= Bvecyflux(i,j,k)+ 0.5d0 * tmp_flux(7)
                 Bveczflux(i,j,k)= Bveczflux(i,j,k)+ 0.5d0 * tmp_flux(8)
                 
                 if(clean_divergence.ne.0) then
                    psidcf = cons_m(6)
                    psidcflux(i,j,k) = psidcflux(i,j,k) + 0.5d0 * psidcf
                 endif

              else if (flux_direction == 2) then
                 
                 call num_x_fluxM(cons_p(1),cons_p(3),cons_p(4),cons_p(2),cons_p(5),&
                      cons_p(7),cons_p(8),cons_p(6),&
                      tmp_flux(1),tmp_flux(3),tmp_flux(4),tmp_flux(2),tmp_flux(5),&
                      tmp_flux(7),tmp_flux(8),tmp_flux(6),&
                      vytp,vztp,vxtp,pressstarp,bylowp,bzlowp,bxlowp,ab0p,wp, &
                      avg_det,avg_alp,avg_beta)
                 
                 densflux(i,j,k) = 0.5d0 * tmp_flux(1)
                 sxflux(i,j,k)   = 0.5d0 * tmp_flux(2)
                 syflux(i,j,k)   = 0.5d0 * tmp_flux(3)
                 szflux(i,j,k)   = 0.5d0 * tmp_flux(4)
                 tauflux(i,j,k)  = 0.5d0 * tmp_flux(5)
                 Bvecxflux(i,j,k)= Bvecxflux(i,j,k)+ 0.5d0 * tmp_flux(6)
                 Bvecyflux(i,j,k)= Bvecyflux(i,j,k)+ 0.5d0 * tmp_flux(7)
                 Bveczflux(i,j,k)= Bveczflux(i,j,k)+ 0.5d0 * tmp_flux(8)
                 
                 if(clean_divergence.ne.0) then
                    psidcf = cons_p(7)
                    psidcflux(i,j,k) = psidcflux(i,j,k) + 0.5d0 * psidcf
                 endif

                 call num_x_fluxM(cons_m(1),cons_m(3),cons_m(4),cons_m(2),cons_m(5),&
                      cons_m(7),cons_m(8),cons_m(6),&
                      tmp_flux(1),tmp_flux(3),tmp_flux(4),tmp_flux(2),tmp_flux(5),&
                      tmp_flux(7),tmp_flux(8),tmp_flux(6),&
                      vytm,vztm,vxtm,pressstarm,bylowm,bzlowm,bxlowm,ab0m,wm, &
                      avg_det,avg_alp,avg_beta)
             
                 densflux(i,j,k) = densflux(i,j,k) + 0.5d0 * tmp_flux(1)
                 sxflux(i,j,k)   = sxflux(i,j,k)   + 0.5d0 * tmp_flux(2)
                 syflux(i,j,k)   = syflux(i,j,k)   + 0.5d0 * tmp_flux(3)
                 szflux(i,j,k)   = szflux(i,j,k)   + 0.5d0 * tmp_flux(4)
                 tauflux(i,j,k)  = tauflux(i,j,k)  + 0.5d0 * tmp_flux(5)
                 Bvecxflux(i,j,k)= Bvecxflux(i,j,k)+ 0.5d0 * tmp_flux(6)
                 Bvecyflux(i,j,k)= Bvecyflux(i,j,k)+ 0.5d0 * tmp_flux(7)
                 Bveczflux(i,j,k)= Bveczflux(i,j,k)+ 0.5d0 * tmp_flux(8)
                 
                 if(clean_divergence.ne.0) then
                    psidcf = cons_m(7)
                    psidcflux(i,j,k) = psidcflux(i,j,k) + 0.5d0 * psidcf
                 endif

              else if (flux_direction == 3) then
                 
                 call num_x_fluxM(cons_p(1),cons_p(4),cons_p(2),cons_p(3),cons_p(5),&
                      cons_p(8),cons_p(6),cons_p(7),&
                      tmp_flux(1),tmp_flux(4),tmp_flux(2),tmp_flux(3),tmp_flux(5),&
                      tmp_flux(8),tmp_flux(6),tmp_flux(7), &
                      vztp,vxtp,vytp,pressstarp,bzlowp,bxlowp,bylowp,ab0p,wp, &
                      avg_det,avg_alp,avg_beta)
                 
                 densflux(i,j,k) = 0.5d0 * tmp_flux(1)
                 sxflux(i,j,k)   = 0.5d0 * tmp_flux(2)
                 syflux(i,j,k)   = 0.5d0 * tmp_flux(3)
                 szflux(i,j,k)   = 0.5d0 * tmp_flux(4)
                 tauflux(i,j,k)  = 0.5d0 * tmp_flux(5)
                 Bvecxflux(i,j,k)= Bvecxflux(i,j,k)+ 0.5d0 * tmp_flux(6)
                 Bvecyflux(i,j,k)= Bvecyflux(i,j,k)+ 0.5d0 * tmp_flux(7)
                 Bveczflux(i,j,k)= Bveczflux(i,j,k)+ 0.5d0 * tmp_flux(8)
                 
                 if(clean_divergence.ne.0) then
                    psidcf = cons_p(8)
                    psidcflux(i,j,k) = psidcflux(i,j,k) + 0.5d0 * psidcf
                 endif

                 call num_x_fluxM(cons_m(1),cons_m(4),cons_m(2),cons_m(3),cons_m(5),&
                      cons_m(8),cons_m(6),cons_m(7),&
                      tmp_flux(1),tmp_flux(4),tmp_flux(2),tmp_flux(3),tmp_flux(5), &
                      tmp_flux(8),tmp_flux(6),tmp_flux(7), &
                      vztm,vxtm,vytm,pressstarm,bzlowm,bxlowm,bylowm,ab0m,wm, &
                      avg_det,avg_alp,avg_beta)
                 
                 densflux(i,j,k) = densflux(i,j,k) + 0.5d0 * tmp_flux(1)
                 sxflux(i,j,k)   = sxflux(i,j,k)   + 0.5d0 * tmp_flux(2)
                 syflux(i,j,k)   = syflux(i,j,k)   + 0.5d0 * tmp_flux(3)
                 szflux(i,j,k)   = szflux(i,j,k)   + 0.5d0 * tmp_flux(4)
                 tauflux(i,j,k)  = tauflux(i,j,k)  + 0.5d0 * tmp_flux(5)
                 Bvecxflux(i,j,k)= Bvecxflux(i,j,k)+ 0.5d0 * tmp_flux(6)
                 Bvecyflux(i,j,k)= Bvecyflux(i,j,k)+ 0.5d0 * tmp_flux(7)
                 Bveczflux(i,j,k)= Bveczflux(i,j,k)+ 0.5d0 * tmp_flux(8)
                 
                 if(clean_divergence.ne.0) then
                    psidcf = cons_m(8)
                    psidcflux(i,j,k) = psidcflux(i,j,k) + 0.5d0 * psidcf
                 endif

              else
                 
                 call CCTK_WARN(0, "Flux direction not x,y,z")
                 
              end if
              
           end do
        end do
     end do
     
     if (CCTK_EQUALS(riemann_solver,"Roe")) then   

        call CCTK_WARN(0, "Roe and Marquina not implemented in MHD yet!!!")
        
!!$        
!!$        call GRHydro_RoeSolveGeneral(CCTK_PASS_FTOF)
!!$        
!!$        if (evolve_tracer .ne. 0) then
!!$           
!!$           call GRHydro_HLLE_TracerGeneral(CCTK_PASS_FTOF)
!!$           
!!$        end if
!!$        
     else if (CCTK_EQUALS(riemann_solver,"Marquina")) then   

        call CCTK_WARN(0, "Roe and Marquina not implemented in MHD yet!!!")

!!$        
!!$        call GRHydro_MarquinaGeneral(CCTK_PASS_FTOF)
!!$        
!!$    Tracers are built directly in to the Marquina solver
        
     end if
     
  end if
  
end subroutine RiemannSolveGeneralM