aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_PPMM.F90
blob: 80051376120c803b8ff80f4bf751857287d440f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
 /*@@
   @file      GRHydro_PPMM.F90
   @date      Sun Feb 10 16:53:29 2002
   @author    Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke, Toni Font, Luca Baiotti, Frank Loeffler
   @desc 
   Routines to do PPM reconstruction.
   @enddesc 
 @@*/

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "GRHydro_Macros.h"

 /*@@
   @routine    SimplePPM_1dM
   @date       Thu Feb 14 19:08:52 2002
   @author     Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke, Toni Font
   @desc 
   The simple PPM reconstruction routine that applies along
   each one dimensional slice.

   @enddesc 
   @calls     
   @calledby   
   @history 
   Written in frustration when IH couldn''t get Toni''s original code 
   to work.
   @endhistory 

@@*/

subroutine SimplePPM_1dM(handle,poly,nx,dx,&
     rho,velx,vely,velz,Bvcx,Bvcy,Bvcz,psidc,eps,press,&
     rhominus,velxminus,velyminus,velzminus,Bvcxminus,Bvcyminus,Bvczminus,psidcminus,epsminus,&
     rhoplus,velxplus,velyplus,velzplus,Bvcxplus,Bvcyplus,Bvczplus,psidcplus,epsplus,dc_flag,&
     trivial_rp, hydro_excision_mask,&
     gxx, gxy, gxz, gyy, gyz, gzz, beta, alp, w_lorentz, &
     dir, ni, nj, nrx, nry, nrz, ev_l, ev_r, xw)

  USE GRHydro_Scalars
  USE GRHydro_EigenproblemM

  implicit none

  DECLARE_CCTK_PARAMETERS

  CCTK_INT :: handle,poly,nx
  CCTK_REAL :: dx
  CCTK_REAL, dimension(nx) :: rho,velx,vely,velz,eps
  CCTK_REAL, dimension(nx) :: Bvcx,Bvcy,Bvcz,psidc
  CCTK_REAL, dimension(nx) :: rhominus,velxminus,velyminus,velzminus,epsminus
  CCTK_REAL, dimension(nx) :: Bvcxminus,Bvcyminus,Bvczminus,psidcminus
  CCTK_REAL, dimension(nx) :: rhoplus,velxplus,velyplus,velzplus,epsplus
  CCTK_REAL, dimension(nx) :: Bvcxplus,Bvcyplus,Bvczplus,psidcplus

  CCTK_INT :: i,s,dc_flag
  CCTK_REAL, dimension(nx) :: drho,dvelx,dvely,dvelz,deps
  CCTK_REAL, dimension(nx) :: dBvcx,dBvcy,dBvcz,dpsidc
  CCTK_REAL, dimension(nx) :: dmrho,dmvelx,dmvely,dmvelz,dmeps
  CCTK_REAL, dimension(nx) :: dmBvcx,dmBvcy,dmBvcz,dmpsidc
  CCTK_REAL, dimension(nx) :: press,dpress,d2rho,tilde_flatten
  CCTK_REAL :: dpress2,dvel,w,flatten,eta,etatilde

  logical, dimension(nx) :: trivial_rp

  CCTK_INT, dimension(nx) :: hydro_excision_mask

  CCTK_REAL, dimension(nx) :: gxx, gxy, gxz, gyy, gyz, gzz, &
                              beta, alp, w_lorentz
  CCTK_INT :: dir, ni, nj, nrx, nry, nrz
  CCTK_REAL, dimension(nrx, nry, nrz) :: ev_l, ev_r, xw

  CCTK_REAL :: uxx, uxy, uxz, uyy, uyz, uzz, det
  CCTK_REAL, dimension(5) :: lam
  CCTK_REAL :: agxx, agxy, agxz, agyy, agyz, agzz
  CCTK_REAL, dimension(nx) :: xwind, l_ev_l, l_ev_r

  logical :: cond

  CCTK_REAL, dimension(nx) :: vx,vy,vz
  
  
  !!$ reconstruct w^i = w_lorentz*v^i to ensure slower than light
  !!$ speeds?
  if (reconstruct_Wv.ne.0) then
    ! all velocity like quantities are now w_lorentz*velocity. We will convert
    ! back to ordinary velocity at the end, using w_lorentz = sqrt(1 + g_{ij}
    ! w^i w^j). 
    vx = w_lorentz*velx
    vy = w_lorentz*vely
    vz = w_lorentz*velz
  else
    vx = velx
    vy = vely
    vz = velz
  end if


!!$  Initially, all the Riemann problems will be trivial

trivial_rp = .true.

!!$  Average slopes delta_m(a). See (1.7) of Colella and Woodward, p.178
!!$  This is the expression for an even grid.

  do i = 2, nx - 1
    drho(i) = 0.5d0 * (rho(i+1) - rho(i-1))
    dvelx(i) = 0.5d0 * (vx(i+1) - vx(i-1))
    dvely(i) = 0.5d0 * (vy(i+1) - vy(i-1))
    dvelz(i) = 0.5d0 * (vz(i+1) - vz(i-1))
    dBvcx(i) = 0.5d0 * (Bvcx(i+1) - Bvcx(i-1))
    dBvcy(i) = 0.5d0 * (Bvcy(i+1) - Bvcy(i-1))
    dBvcz(i) = 0.5d0 * (Bvcz(i+1) - Bvcz(i-1))
    if(dc_flag.ne.0)dpsidc(i) = 0.5d0 * (psidc(i+1) - psidc(i-1))

    dpress(i) = press(i+1) - press(i-1)
    d2rho(i) = (rho(i+1) - 2.d0 * rho(i) + rho(i-1))! / 6.d0 / dx / dx
    ! since we use d2rho only for the condition d2rho(i+1)*d2rhoi(i-1)<0 
    ! the denominator is not necessary
  end do
  if (poly .eq. 0) then
    do i = 2, nx - 1
      deps(i) = 0.5d0 * (eps(i+1) - eps(i-1))
    end do
  end if

!!$  Steepened slope. See (1.8) of Colella and Woodward, p.178

  do i = 2, nx - 1
#define STEEP(x,dx,dmx)                                              \
    if ( (x(i+1) - x(i)) * (x(i) - x(i-1)) > 0.d0 ) then           &&\
      dmx(i) = sign(1.d0, dx(i)) *                                   \
           min(abs(dx(i)), 2.d0 * abs(x(i) - x(i-1)),                \
                           2.d0 * abs(x(i+1) - x(i)))              &&\
    else                                                           &&\
      dmx(i) = 0.d0                                                &&\
    end if
    STEEP(rho, drho, dmrho)
    STEEP(velx, dvelx, dmvelx)
    STEEP(vely, dvely, dmvely)
    STEEP(velz, dvelz, dmvelz)
    STEEP(Bvcx, dBvcx, dmBvcx)
    STEEP(Bvcy, dBvcy, dmBvcy)
    STEEP(Bvcz, dBvcz, dmBvcz)
    if(dc_flag.ne.0) then
       STEEP(psidc,dpsidc,dmpsidc)
    endif

  end do
  if (poly .eq. 0) then
    do i = 2, nx - 1
      STEEP(eps, deps, dmeps)
    end do
  end if

!!$  Initial boundary states. See (1.9) of Colella and Woodward, p.178

  do i = 2, nx-2
    rhoplus(i) = 0.5d0 * (rho(i) + rho(i+1)) + &
         (dmrho(i) - dmrho(i+1)) / 6.d0
    rhominus(i+1) = rhoplus(i)
    velxplus(i) = 0.5d0 * (vx(i) + vx(i+1)) + &
         (dmvelx(i) - dmvelx(i+1)) / 6.d0
    velxminus(i+1) = velxplus(i)
    velyplus(i) = 0.5d0 * (vy(i) + vy(i+1)) + &
         (dmvely(i) - dmvely(i+1)) / 6.d0
    velyminus(i+1) = velyplus(i)
    velzplus(i) = 0.5d0 * (vz(i) + vz(i+1)) + &
         (dmvelz(i) - dmvelz(i+1)) / 6.d0
    velzminus(i+1) = velzplus(i)

    Bvcxplus(i) = 0.5d0 * (Bvcx(i) + Bvcx(i+1)) + &
         (dmBvcx(i) - dmBvcx(i+1)) / 6.d0
    Bvcxminus(i+1) = Bvcxplus(i)
    Bvcyplus(i) = 0.5d0 * (Bvcy(i) + Bvcy(i+1)) + &
         (dmBvcy(i) - dmBvcy(i+1)) / 6.d0
    Bvcyminus(i+1) = Bvcyplus(i)
    Bvczplus(i) = 0.5d0 * (Bvcz(i) + Bvcz(i+1)) + &
         (dmBvcz(i) - dmBvcz(i+1)) / 6.d0
    Bvczminus(i+1) = Bvczplus(i)
    if(dc_flag.ne.0) then
       psidcplus(i) = 0.5d0 * (psidc(i) + psidc(i+1)) + &
            (dmpsidc(i) - dmpsidc(i+1)) / 6.d0
       psidcminus(i+1) = psidcplus(i)
    endif
  end do
  if (poly .eq. 0) then
    do i = 2, nx-2
      epsplus(i) = 0.5d0 * (eps(i) + eps(i+1)) + &
           (dmeps(i) - dmeps(i+1)) / 6.d0
      epsminus(i+1) = epsplus(i)
    end do
  end if

!!$Discontinuity steepening. See (1.14-17) of C&W.
!!$This is the detect routine which mat be activated with the ppm_detect parameter
!!$Note that this part really also depends on the grid being even. 
!!$Note also that we don''t have access to the gas constant gamma.
!!$So this is just dropped from eq. (3.2) of C&W.
!!$We can get around this by just rescaling the constant k0 (ppm_k0 here).

  if (ppm_detect .ne. 0) then

    do i = 3, nx - 2
      if ( (d2rho(i+1)*d2rho(i-1) < 0.d0).and.(abs(rho(i+1)-rho(i-1)) - &
           ppm_epsilon_shock * min(abs(rho(i+1)), abs(rho(i-1))) > 0.d0) ) then
        etatilde = (rho(i-2) - rho(i+2) + 4.d0 * drho(i)) / (drho(i) * 12.d0)
      else
        etatilde = 0.d0
      end if
      eta = max(0.d0, min(1.d0, ppm_eta1 * (etatilde - ppm_eta2)))
      if (ppm_k0 * abs(drho(i)) * min(press(i-1),press(i+1)) < &
           abs(dpress(i)) * min(rho(i-1), rho(i+1))) then
        eta = 0.d0
      end if
      if (eta > 0.d0) then
        trivial_rp(i-1) = .false.
        trivial_rp(i) = .false.
      end if
      rhominus(i) = rhominus(i) * (1.d0 - eta) + &
           (rho(i-1) + 0.5d0 * dmrho(i-1)) * eta
      rhoplus(i) = rhoplus(i) * (1.d0 - eta) + &
           (rho(i+1) - 0.5d0 * dmrho(i+1)) * eta
    end do

  end if

  !!$ mppm
#define D_UPW(x) (0.5d0 * (x(i) + x(i+1)))
#define LEFT1(x)  (13.d0*x(i+1)-5.d0*x(i+2)+x(i+3)+3.d0*x(i  ))/12.d0
#define RIGHT1(x) (13.d0*x(i  )-5.d0*x(i-1)+x(i-2)+3.d0*x(i+1))/12.d0
  if (ppm_mppm .gt. 0) then
    l_ev_l=0.d0
    l_ev_r=0.d0
    xwind=0.d0
    do i=3, nx - 3
      agxx = 0.5d0*( gxx(i) + gxx(i+1) )
      agxy = 0.5d0*( gxy(i) + gxy(i+1) )
      agxz = 0.5d0*( gxz(i) + gxz(i+1) )
      agyy = 0.5d0*( gyy(i) + gyy(i+1) )
      agyz = 0.5d0*( gyz(i) + gyz(i+1) )
      agzz = 0.5d0*( gzz(i) + gzz(i+1) )
      det = SPATIAL_DETERMINANT(agxx, agxy, agxz, \
                              agyy, agyz, agzz)
      call UpperMetric (uxx, uxy, uxz, uyy, uyz, uzz, &
                        det, agxx, agxy, agxz, agyy, agyz, agzz)
      call eigenvaluesM(handle,&
                 D_UPW(rho), D_UPW(velx), D_UPW(vely), D_UPW(velz), &
                 D_UPW(eps), D_UPW(press), D_UPW(w_lorentz),&
                 D_UPW(Bvcx), D_UPW(Bvcy), D_UPW(Bvcz), lam, &
                 agxx, agxy, agxz, agyy, agyz, agzz, &
                 uxx, D_UPW(alp), D_UPW(beta))
      l_ev_l(i)=lam(1)
      l_ev_r(i)=lam(5)
      xwind(i) = (lam(1) + lam(5)) / (abs(lam(1)) + abs(lam(5)))
      xwind(i) = min(1.d0, max(-1.d0, xwind(i)))
#define LEFTPLUS(x,xplus)    xplus(i)   =       abs(xwind(i))  * LEFT1(x) + \
                                          (1.d0-abs(xwind(i))) * xplus(i)
#define LEFTMINUS(x,xminus)  xminus(i+1)=       abs(xwind(i))  * LEFT1(x) + \
                                          (1.d0-abs(xwind(i))) * xminus(i+1)
#define RIGHTPLUS(x,xplus)   xplus(i)   =       abs(xwind(i))  * RIGHT1(x) + \
                                          (1.d0-abs(xwind(i))) * xplus(i)
#define RIGHTMINUS(x,xminus) xminus(i+1)=       abs(xwind(i))  * RIGHT1(x) + \
                                          (1.d0-abs(xwind(i))) * xminus(i+1)
#define CHECK(x,xc) if (x(i+1) .gt. x(i)) then && xc=min(x(i+1),max(x(i),xc)) && else && xc=min(x(i),max(x(i+1),xc)) && endif
!!$      xwind(i)=0.d0
      if (xwind(i) .lt. 0.0d0) then
        LEFTPLUS(rho, rhoplus)
        LEFTMINUS(rho, rhominus)
        LEFTPLUS(velx, velxplus)
        LEFTMINUS(velx, velxminus)
        LEFTPLUS(vely, velyplus)
        LEFTMINUS(vely, velyminus)
        LEFTPLUS(velz, velzplus)
        LEFTMINUS(velz, velzminus)
        LEFTPLUS(Bvcx, Bvcxplus)
        LEFTMINUS(Bvcx, Bvcxminus)
        LEFTPLUS(Bvcy, Bvcyplus)
        LEFTMINUS(Bvcy, Bvcyminus)
        LEFTPLUS(Bvcz, Bvczplus)
        LEFTMINUS(Bvcz, Bvczminus)
        if(dc_flag.ne.0) then
           LEFTPLUS(psidc, psidcplus)
           LEFTMINUS(psidc, psidcminus)
        endif
        if (poly .eq. 0) then
          LEFTPLUS(eps, epsplus)
          LEFTMINUS(eps, epsminus)
        end if
      else
        RIGHTPLUS(rho, rhoplus)
        RIGHTMINUS(rho, rhominus)
        RIGHTPLUS(velx, velxplus)
        RIGHTMINUS(velx, velxminus)
        RIGHTPLUS(vely, velyplus)
        RIGHTMINUS(vely, velyminus)
        RIGHTPLUS(velz, velzplus)
        RIGHTMINUS(velz, velzminus)
        RIGHTPLUS(Bvcx, Bvcxplus)
        RIGHTMINUS(Bvcx, Bvcxminus)
        RIGHTPLUS(Bvcy, Bvcyplus)
        RIGHTMINUS(Bvcy, Bvcyminus)
        RIGHTPLUS(Bvcz, Bvczplus)
        RIGHTMINUS(Bvcz, Bvczminus)
        if(dc_flag.ne.0) then
           RIGHTPLUS(psidc, psidcplus)
           RIGHTMINUS(psidc, psidcminus)
        endif
        if (poly .eq. 0) then
          RIGHTPLUS(eps, epsplus)
          RIGHTMINUS(eps, epsminus)
        end if
      end if
      CHECK(rho, rhoplus(i))
      CHECK(rho, rhominus(i+1))
      CHECK(velx, velxplus(i))
      CHECK(velx, velxminus(i+1))
      CHECK(vely, velyplus(i))
      CHECK(vely, velyminus(i+1))
      CHECK(velz, velzplus(i))
      CHECK(velz, velzminus(i+1))
      CHECK(Bvcx, Bvcxplus(i))
      CHECK(Bvcx, Bvcxminus(i+1))
      CHECK(Bvcy, Bvcyplus(i))
      CHECK(Bvcy, Bvcyminus(i+1))
      CHECK(Bvcz, Bvczplus(i))
      CHECK(Bvcz, Bvczminus(i+1))
      if(dc_flag.ne.0) then
         CHECK(psidc, psidcplus(i))
         CHECK(psidc, psidcminus(i+1))
      endif
      if (poly .eq. 0) then
        CHECK(eps, epsplus(i))
        CHECK(eps, epsminus(i+1))
      end if
!!$      if ((dir .eq. 1) .and. (ni .eq. 4) .and. (nj .eq. 4)) then
!!$        write (*,*) rhoplus(i), rhominus(i+1)
!!$      end if
    end do
    !!$ mppm debug output
    if (ppm_mppm_debug_eigenvalues .gt. 0) then
      if (dir .eq. 1) then
        ev_l(:,ni,nj) = l_ev_l
        ev_r(:,ni,nj) = l_ev_r
        xw(:,ni,nj) = xwind
      else if (dir .eq. 2) then
        ev_l(ni,:,nj) = l_ev_l
        ev_r(ni,:,nj) = l_ev_r
        xw(ni,:,nj) = xwind
      else if (dir .eq. 3) then
        ev_l(ni,nj,:) = l_ev_l
        ev_r(ni,nj,:) = l_ev_r
        xw(ni,nj,:) = xwind
      else
        write (*,*) "flux direction not 1 to 3 ?"
      end if
    end if
  end if

!!$  Zone flattening. See appendix of C&W, p. 197-8.

  do i = 3, nx - 2
    dpress2 = press(i+2) - press(i-2)
    dvel = velx(i+1) - velx(i-1)
    if ( (abs(dpress(i)) >  ppm_epsilon * min(press(i-1),press(i+1))) .and. &
         (dvel < 0.d0) ) then
      w = 1.d0
    else
      w = 0.d0
    end if
    if (abs(dpress2) < ppm_small) then
      tilde_flatten(i) = 1.d0
    else
      tilde_flatten(i) = max(0.d0, 1.d0 - w * max(0.d0, ppm_omega2 * &
           (dpress(i) / dpress2 - ppm_omega1)))
    end if
  end do



  if (PPM3) then !!$ Implement C&W, page 197, but with a workaround which allows to use stencil=3.
    do i = 3, nx - 2
      flatten = tilde_flatten(i)
      if (abs(1.d0 - flatten) > 0.d0) then
        trivial_rp(i-1) = .false.
        trivial_rp(i) = .false.
      end if
      rhoplus(i) = flatten * rhoplus(i) + (1.d0 - flatten) * rho(i)
      rhominus(i) = flatten * rhominus(i) + (1.d0 - flatten) * rho(i)
      velxplus(i) = flatten * velxplus(i) + (1.d0 - flatten) * vx(i)
      velxminus(i) = flatten * velxminus(i) + (1.d0 - flatten) * vx(i)
      velyplus(i) = flatten * velyplus(i) + (1.d0 - flatten) * vy(i)
      velyminus(i) = flatten * velyminus(i) + (1.d0 - flatten) * vy(i)
      velzplus(i) = flatten * velzplus(i) + (1.d0 - flatten) * vz(i)
      velzminus(i) = flatten * velzminus(i) + (1.d0 - flatten) * vz(i)
      Bvcxplus(i) = flatten * Bvcxplus(i) + (1.d0 - flatten) * Bvcx(i)
      Bvcxminus(i) = flatten * Bvcxminus(i) + (1.d0 - flatten) * Bvcx(i)
      Bvcyplus(i) = flatten * Bvcyplus(i) + (1.d0 - flatten) * Bvcy(i)
      Bvcyminus(i) = flatten * Bvcyminus(i) + (1.d0 - flatten) * Bvcy(i)
      Bvczplus(i) = flatten * Bvczplus(i) + (1.d0 - flatten) * Bvcz(i)
      Bvczminus(i) = flatten * Bvczminus(i) + (1.d0 - flatten) * Bvcz(i)
      if(dc_flag.ne.0) then
         psidcplus(i) = flatten * psidcplus(i) + (1.d0 - flatten) * psidc(i)
         psidcminus(i) = flatten * psidcminus(i) + (1.d0 - flatten) * psidc(i)
      endif
      if (poly .eq. 0) then
        epsplus(i) = flatten * epsplus(i) + (1.d0 - flatten) * eps(i)
        epsminus(i) = flatten * epsminus(i) + (1.d0 - flatten) * eps(i)
      end if
    end do
  else  !!$ Really implement C&W, page 197; which requires stencil 4.
    do i = 4, nx - 3
      s=sign(1.d0, -dpress(i))
      flatten = max(tilde_flatten(i), tilde_flatten(i+s))  
      if (abs(1.d0 - flatten) > 0.d0) then
        trivial_rp(i-1) = .false.
        trivial_rp(i) = .false.
      end if
      rhoplus(i) = flatten * rhoplus(i) + (1.d0 - flatten) * rho(i)
      rhominus(i) = flatten * rhominus(i) + (1.d0 - flatten) * rho(i)
      velxplus(i) = flatten * velxplus(i) + (1.d0 - flatten) * vx(i)
      velxminus(i) = flatten * velxminus(i) + (1.d0 - flatten) * vx(i)
      velyplus(i) = flatten * velyplus(i) + (1.d0 - flatten) * vy(i)
      velyminus(i) = flatten * velyminus(i) + (1.d0 - flatten) * vy(i)
      velzplus(i) = flatten * velzplus(i) + (1.d0 - flatten) * vz(i)
      velzminus(i) = flatten * velzminus(i) + (1.d0 - flatten) * vz(i)
      Bvcxplus(i) = flatten * Bvcxplus(i) + (1.d0 - flatten) * Bvcx(i)
      Bvcxminus(i) = flatten * Bvcxminus(i) + (1.d0 - flatten) * Bvcx(i)
      Bvcyplus(i) = flatten * Bvcyplus(i) + (1.d0 - flatten) * Bvcy(i)
      Bvcyminus(i) = flatten * Bvcyminus(i) + (1.d0 - flatten) * Bvcy(i)
      Bvczplus(i) = flatten * Bvczplus(i) + (1.d0 - flatten) * Bvcz(i)
      Bvczminus(i) = flatten * Bvczminus(i) + (1.d0 - flatten) * Bvcz(i)
      if(dc_flag.ne.0) then
         psidcplus(i) = flatten * psidcplus(i) + (1.d0 - flatten) * psidc(i)
         psidcminus(i) = flatten * psidcminus(i) + (1.d0 - flatten) * psidc(i)
      endif
      if (poly .eq. 0) then
        epsplus(i) = flatten * epsplus(i) + (1.d0 - flatten) * eps(i)
        epsminus(i) = flatten * epsminus(i) + (1.d0 - flatten) * eps(i)
      end if
    end do
  end if


!!$ Monotonicity. See (1.10) of C&W.

do i = GRHydro_stencil, nx - GRHydro_stencil + 1
#define MON(xminus,x,xplus)                                       \
    if (.not.( (xplus(i).eq.x(i)) .and. (x(i).eq.xminus(i)) )     \
        .and. ((xplus(i)-x(i))*(x(i)-xminus(i)) .le. 0.d0)) then&&\
      trivial_rp(i-1) = .false.                                 &&\
      trivial_rp(i) = .false.                                   &&\
      xminus(i) = x(i)                                          &&\
      xplus(i) = x(i)                                           &&\
    else if (6.d0 * (xplus(i) - xminus(i)) * (x(i) - 0.5d0 *      \
                (xplus(i) + xminus(i))) >                         \
                (xplus(i) - xminus(i))**2) then                 &&\
      xminus(i) = 3.d0 * x(i) - 2.d0 * xplus(i)                 &&\
      trivial_rp(i-1) = .false.                                 &&\
      trivial_rp(i) = .false.                                   &&\
    else if (6.d0 * (xplus(i) - xminus(i)) * (x(i) - 0.5d0 *      \
                (xplus(i) + xminus(i))) <                         \
               -(xplus(i) - xminus(i))**2) then                 &&\
      xplus(i) = 3.d0 * x(i) - 2.d0 * xminus(i)                 &&\
      trivial_rp(i-1) = .false.                                 &&\
      trivial_rp(i) = .false.                                   &&\
    end if                                                      &&\
    if (.not.( (xplus(i).eq.x(i)) .and. (x(i).eq.xminus(i)) ) ) then     &&\
      trivial_rp(i-1) = .false.                                 &&\
      trivial_rp(i) = .false.                                   &&\
    end if

    MON(rhominus,rho,rhoplus)
    MON(velxminus,velx,velxplus)
    MON(velyminus,vely,velyplus)
    MON(velzminus,velz,velzplus)
    MON(Bvcxminus,Bvcx,Bvcxplus)
    MON(Bvcyminus,Bvcy,Bvcyplus)
    MON(Bvczminus,Bvcz,Bvczplus)
    if(dc_flag.ne.0) then
       MON(psidcminus,psidc,psidcplus)
    endif
  end do
  if (poly .eq. 0) then
    do i = GRHydro_stencil, nx - GRHydro_stencil + 1
      MON(epsminus,eps,epsplus)
    end do
  end if

  if (check_for_trivial_rp .eq. 0) then
    trivial_rp = .false.
  end if

  !!$ excision
  do i = 1, nx
    if (GRHydro_enable_internal_excision /= 0 .and. &
        (hydro_excision_mask(i) .ne. 0)) then
      if (i .gt. 1) then
        trivial_rp(i-1)=.true.
      end if
      trivial_rp(i)=.true.
    else
      !!$ Do not optimize cond away by combining the 'if's. Fortran does not
      !!$  have to follow the order of sub-expressions given here and might
      !!$  access outside the array range
      cond = .false.
      if (i .gt. 1 .and. GRHydro_enable_internal_excision /= 0) then
        cond = hydro_excision_mask(i-1) .ne. 0
      end if
      if (cond) then
        rhominus(i)=rho(i)
        rhoplus(i)=rho(i)
        velxminus(i)=vx(i)
        velxplus(i)=vx(i)
        velyminus(i)=vy(i)
        velyplus(i)=vy(i)
        velzminus(i)=vz(i)
        velzplus(i)=vz(i)
        Bvcxminus(i)=Bvcx(i)  
        Bvcxplus(i)=Bvcx(i)
        Bvcyminus(i)=Bvcy(i)
        Bvcyplus(i)=Bvcy(i)
        Bvczminus(i)=Bvcz(i)
        Bvczplus(i)=Bvcz(i)
        rhominus(i-1)=rho(i)
        rhoplus(i-1)=rho(i)
        velxminus(i-1)=vx(i)
        velxplus(i-1)=vx(i)
        velyminus(i-1)=vy(i)
        velyplus(i-1)=vy(i)
        velzminus(i-1)=vz(i)
        velzplus(i-1)=vz(i)
        Bvcxminus(i-1)=Bvcx(i)
        Bvcxplus(i-1)=Bvcx(i)
        Bvcyminus(i-1)=Bvcy(i)
        Bvcyplus(i-1)=Bvcy(i)
        Bvczminus(i-1)=Bvcz(i)
        Bvczplus(i-1)=Bvcz(i)
        if (dc_flag.ne.0) then
          psidcminus(i)=psidc(i)
          psidcplus(i)=psidc(i)
          psidcminus(i-1)=psidc(i)
          psidcplus(i-1)=psidc(i)
        end if
       if (poly .eq. 0) then
          epsminus(i)=eps(i)
          epsplus(i)=eps(i)
          epsminus(i-1)=eps(i)
          epsplus(i-1)=eps(i)
        end if
      else
        cond = .false.
        if ((i.gt.2) .and. (i.lt.nx) .and. GRHydro_enable_internal_excision /= 0) then
          cond = (ppm_mppm .eq. 0) .and. (hydro_excision_mask(i-2) .ne. 0)
        end if
        if (cond) then
          call PPM_TVD(rho(i-1), rho(i), rho(i+1), rhominus(i), rhoplus(i))
          call PPM_TVD(vx(i-1), vx(i), vx(i+1), velxminus(i), velxplus(i))
          call PPM_TVD(vy(i-1), vy(i), vy(i+1), velyminus(i), velyplus(i))
          call PPM_TVD(vz(i-1), vz(i), vz(i+1), velzminus(i), velzplus(i))
          call PPM_TVD(Bvcx(i-1), Bvcx(i), Bvcx(i+1), Bvcxminus(i), Bvcxplus(i))
          call PPM_TVD(Bvcy(i-1), Bvcy(i), Bvcy(i+1), Bvcyminus(i), Bvcyplus(i))
          call PPM_TVD(Bvcz(i-1), Bvcz(i), Bvcz(i+1), Bvczminus(i), Bvczplus(i))
          if(dc_flag.ne.0) then
             call PPM_TVD(psidc(i-1), psidc(i), psidc(i+1), psidcminus(i), psidcplus(i))
          endif
          if (poly .eq. 0) then
            call PPM_TVD(eps(i-1), eps(i), eps(i+1), epsminus(i), epsplus(i))
          end if
        end if
      end if
      cond = .false.
      if (i .lt. nx .and. GRHydro_enable_internal_excision /= 0) then
        cond = hydro_excision_mask(i+1) .ne. 0
      end if
      if (cond) then
        rhominus(i)=rho(i)
        rhoplus(i)=rho(i)
        velxminus(i)=vx(i)
        velxplus(i)=vx(i)
        velyminus(i)=vy(i)
        velyplus(i)=vy(i)
        velzminus(i)=vz(i)
        velzplus(i)=vz(i)
        Bvcxminus(i)=Bvcx(i)
        Bvcxplus(i)=Bvcx(i)
        Bvcyminus(i)=Bvcy(i)
        Bvcyplus(i)=Bvcy(i)
        Bvczminus(i)=Bvcz(i)
        Bvczplus(i)=Bvcz(i)
        rhominus(i+1)=rho(i)
        rhoplus(i+1)=rho(i)
        velxminus(i+1)=vx(i)
        velxplus(i+1)=vx(i)
        velyminus(i+1)=vy(i)
        velyplus(i+1)=vy(i)
        velzminus(i+1)=vz(i)
        velzplus(i+1)=vz(i)
        Bvcxminus(i+1)=Bvcx(i)
        Bvcxplus(i+1)=Bvcx(i)
        Bvcyminus(i+1)=Bvcy(i)
        Bvcyplus(i+1)=Bvcy(i)
        Bvczminus(i+1)=Bvcz(i)
        Bvczplus(i+1)=Bvcz(i)
        if (dc_flag.ne.0) then
          psidcminus(i)=psidc(i)
          psidcplus(i)=psidc(i)
          psidcminus(i+1)=psidc(i)
          psidcplus(i+1)=psidc(i)
        endif
        if (poly .eq. 0) then
          epsminus(i)=eps(i)
          epsplus(i)=eps(i)
          epsminus(i+1)=eps(i)
          epsplus(i+1)=eps(i)
        endif
      else
        cond = .false.
        if ((i.lt.nx-1) .and. (i.gt.1) .and. GRHydro_enable_internal_excision /= 0) then
          cond = (ppm_mppm .eq. 0) .and. (hydro_excision_mask(i+2) .ne. 0)
        end if
        if (cond) then
          call PPM_TVD(rho(i-1), rho(i), rho(i+1), rhominus(i), rhoplus(i))
          call PPM_TVD(vx(i-1), vx(i), vx(i+1), velxminus(i), velxplus(i))
          call PPM_TVD(vy(i-1), vy(i), vy(i+1), velyminus(i), velyplus(i))
          call PPM_TVD(vz(i-1), vz(i), vz(i+1), velzminus(i), velzplus(i))
          call PPM_TVD(Bvcx(i-1), Bvcx(i), Bvcx(i+1), Bvcxminus(i), Bvcxplus(i))
          call PPM_TVD(Bvcy(i-1), Bvcy(i), Bvcy(i+1), Bvcyminus(i), Bvcyplus(i))
          call PPM_TVD(Bvcz(i-1), Bvcz(i), Bvcz(i+1), Bvczminus(i), Bvczplus(i))
          if(dc_flag.ne.0) then
             call PPM_TVD(Bvcz(i-1), Bvcz(i), Bvcz(i+1), Bvczminus(i), Bvczplus(i))
          endif
          if (poly .eq. 0) then
            call PPM_TVD(eps(i-1), eps(i), eps(i+1), epsminus(i), epsplus(i))
          end if
        end if
      end if
    end if
  end do

  !!$ transform back to vel if Wv was used!
  if (reconstruct_Wv.ne.0) then
    do i = grhydro_stencil, nx - grhydro_stencil + 1
      ! divide out the Loretnz factor obtained from w_lorentz =
      ! sqrt(1+g_{ij} w^i w^j) for both the
      ! plus and minus quantities this should by construction ensure
      ! that any Lorentz factor calculated from them later on is
      ! physical (ie. > 1.d0)
      agxx = 0.5d0*( gxx(i) + gxx(i-1) )
      agxy = 0.5d0*( gxy(i) + gxy(i-1) )
      agxz = 0.5d0*( gxz(i) + gxz(i-1) )
      agyy = 0.5d0*( gyy(i) + gyy(i-1) )
      agyz = 0.5d0*( gyz(i) + gyz(i-1) )
      agzz = 0.5d0*( gzz(i) + gzz(i-1) )
      w = sqrt( 1.d0 + agxx*velxminus(i)*velxminus(i) + &
                       agyy*velyminus(i)*velyminus(i) &
              + agzz*velzminus(i)*velzminus(i) + &
                2.d0*agxy*velxminus(i)*velyminus(i) &
              + 2.d0*agxz*velxminus(i)*velzminus(i) + &
                2.d0*agyz*velyminus(i)*velzminus(i) )
      velxminus(i) = velxminus(i)/w
      velyminus(i) = velyminus(i)/w
      velzminus(i) = velzminus(i)/w
      
      agxx = 0.5d0*( gxx(i) + gxx(i+1) )
      agxy = 0.5d0*( gxy(i) + gxy(i+1) )
      agxz = 0.5d0*( gxz(i) + gxz(i+1) )
      agyy = 0.5d0*( gyy(i) + gyy(i+1) )
      agyz = 0.5d0*( gyz(i) + gyz(i+1) )
      agzz = 0.5d0*( gzz(i) + gzz(i+1) )
      w = sqrt( 1.d0 + agxx*velxplus(i)*velxplus(i) + &
                agyy*velyplus(i)*velyplus(i) &
              + agzz*velzplus(i)*velzplus(i) + &
               2.d0*agxy*velxplus(i)*velyplus(i) &
              + 2.d0*agxz*velxplus(i)*velzplus(i) + &
               2.d0*agyz*velyplus(i)*velzplus(i) )
      velxplus(i) = velxplus(i)/w
      velyplus(i) = velyplus(i)/w
      velzplus(i) = velzplus(i)/w
    end do
  end if
  
  
return

end subroutine SimplePPM_1dM