aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_EigenproblemM.F90
blob: ec4d44a14e57581aef9759ec353a421abf6b93e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
 /*@@
   @file      GRHydro_EigenproblemM.F90
   @date      August 30, 2010
   @author    Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke, Pedro Montero, Joachim Frieben
   @desc
   Computes the spectral decomposition of a given state.
   Implements the analytical scheme devised by J. M. Ibanez
   et al., "Godunov Methods: Theory and Applications", New
   York, 2001, 485-503. The optimized method for computing
   the Roe flux in the special relativistic case is due to
   M. A. Aloy et al., Comput. Phys. Commun. 120 (1999)
   115-121, and has been extended to the general relativistic
   case as employed in this subroutine by J. Frieben, J. M.
   Ibanez, and J. Pons (in preparation).
   @enddesc
 @@*/

#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"

module GRHydro_EigenproblemM
  implicit none


 /*@@
   @routine    eigenvaluesM
   @date       Aug 30, 2010
   @author     Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke
   @desc
   Computes the eigenvalues of the Jacobian matrix evaluated
   at the given state.
   @enddesc
   @calls
   @calledby
   @history
   Culled from the routines in GR3D, author Mark Miller.
   @endhistory

@@*/

CONTAINS

subroutine eigenvaluesM(handle,rho,velx,vely,velz,eps,w_lorentz,&
     Bvcx,Bvcy,Bvcz,lam,gxx,gxy,gxz,gyy,gyz,gzz,u,alp,beta)
  implicit none

  DECLARE_CCTK_PARAMETERS

  CCTK_REAL rho,velx,vely,velz,eps,w_lorentz
  CCTK_REAL Bvcx,Bvcy,Bvcz
  CCTK_REAL lam(5)
  CCTK_REAL gxx,gxy,gxz,gyy,gyz,gzz
  CCTK_REAL alp,beta,u

  CCTK_REAL cs2,one,two,U2
  CCTK_REAL vlowx,vlowy,vlowz,v2,w
  CCTK_REAL lam1,lam2,lam3,lamm,lamp,lamm_nobeta,lamp_nobeta
  CCTK_INT handle
  CCTK_REAL dpdrho,dpdeps,press

  CCTK_REAL Bvcxlow,Bvcylow,Bvczlow,Bvc2,rhohstar,va2
  CCTK_REAL Bdotv,b2

! begin EOS Omni vars
  integer :: n,keytemp,anyerr,keyerr(1)
  real*8  :: xpress,xeps,xtemp,xye
  n=1;keytemp=0;anyerr=0;keyerr(1)=0
  xpress=0.0d0;xeps=0.0d0;xtemp=0.0d0;xye=0.0d0
! end EOS Omni vars            

  one = 1.0d0
  two = 2.0d0

!!$  Set required fluid quantities


!  call EOS_Omni_cs2(handle,keytemp,GRHydro_eos_rf_prec,n,&
!       rho,eps,xtemp,xye,cs2,keyerr,anyerr)
  call EOS_Omni_press(handle,keytemp,GRHydro_eos_rf_prec,n,&
       rho,eps,xtemp,xye,press,keyerr,anyerr)

  call EOS_Omni_DPressByDEps(handle,keytemp,GRHydro_eos_rf_prec,n,&
       rho,eps,xtemp,xye,dpdeps,keyerr,anyerr)

  call EOS_Omni_DPressByDRho(handle,keytemp,GRHydro_eos_rf_prec,n,&
       rho,eps,xtemp,xye,dpdrho,keyerr,anyerr)

  cs2 = (dpdrho + press * dpdeps / (rho**2))/ &
       (1.0d0 + eps + press/rho)

  vlowx = gxx*velx + gxy*vely + gxz*velz
  vlowy = gxy*velx + gyy*vely + gyz*velz
  vlowz = gxz*velx + gyz*vely + gzz*velz
  v2 = vlowx*velx + vlowy*vely + vlowz*velz

!!$ Lower the B-field, and square of the magnitude
  Bvcxlow = gxx*Bvcx + gxy*Bvcy + gxz*Bvcz
  Bvcylow = gxy*Bvcx + gyy*Bvcy + gyz*Bvcz
  Bvczlow = gxz*Bvcx + gyz*Bvcy + gzz*Bvcz
  Bvc2 = Bvcxlow*Bvcx + Bvcylow*Bvcy + Bvczlow*Bvcz

  Bdotv = Bvcxlow*velx + Bvcylow*vely + Bvczlow*velz
  w = w_lorentz

  b2=Bvc2/w**2+Bdotv**2

 
!!$ rhohstar is the term that appears in Tmunu as well = rho*enth + b^2
  rhohstar = rho*(1.0+eps)+press+b2

!!$ Alfven velocity squared
  va2 = b2/(rhohstar)

!!$ The following combination always comes up in the wavespeed calculation:
!!$ U2 = v_a^2 + c_s^2(1-v_a^2)
!!$ In the unmagnetized case, it reduces to cs2
  U2 = va2+cs2*(1.d0-va2)

!!$  Calculate eigenvalues

  lam1 = velx - beta/alp
  lam2 = velx - beta/alp
  lam3 = velx - beta/alp
  lamp_nobeta = (velx*(one-U2) + sqrt(U2*(one-v2)*&
       (u*(one-v2*U2) - velx**2*(one-U2))))/(one-v2*U2)
  lamm_nobeta = (velx*(one-U2) - sqrt(U2*(one-v2)*&
       (u*(one-v2*U2) - velx**2*(one-U2))))/(one-v2*U2)

  lamp = lamp_nobeta - beta/alp
  lamm = lamm_nobeta - beta/alp

  lam(1) = lamm
  lam(2) = lam1
  lam(3) = lam2
  lam(4) = lam3
  lam(5) = lamp

end subroutine eigenvaluesM

subroutine eigenvaluesM_hot(handle,ii,jj,kk,rho,velx,vely,velz,eps,w_lorentz,&
                             Bvcx,Bvcy,Bvcz,temp,ye,lam,gxx,gxy,gxz,gyy,gyz,gzz,u,alp,beta)
  implicit none

  DECLARE_CCTK_PARAMETERS

  CCTK_REAL rho,velx,vely,velz,eps,w_lorentz
  CCTK_REAL Bvcx,Bvcy,Bvcz
  CCTK_REAL lam(5)
  CCTK_REAL gxx,gxy,gxz,gyy,gyz,gzz
  CCTK_REAL alp,beta,u
  CCTK_REAL temp,ye

  CCTK_REAL cs2,one,two,U2
  CCTK_REAL vlowx,vlowy,vlowz,v2,w
  CCTK_REAL lam1,lam2,lam3,lamm,lamp,lamm_nobeta,lamp_nobeta
  CCTK_INT handle, ii,jj,kk
  CCTK_REAL dpdrho,dpdeps,press

  CCTK_REAL Bvcxlow,Bvcylow,Bvczlow,Bvc2,rhohstar,va2
  CCTK_REAL Bdotv,b2

! begin EOS Omni vars
  integer :: n,keytemp,anyerr,keyerr(1)
  real*8  :: xpress,xeps,xtemp,xye
  n=1;keytemp=0;anyerr=0;keyerr(1)=0
  xpress=0.0d0;xeps=0.0d0;xtemp=0.0d0;xye=0.0d0
! end EOS Omni vars            

  one = 1.0d0
  two = 2.0d0

!!$  Set required fluid quantities

  call EOS_Omni_cs2(handle,keytemp,GRHydro_eos_rf_prec,n,&
       rho,eps,temp,ye,cs2,keyerr,anyerr)

  vlowx = gxx*velx + gxy*vely + gxz*velz
  vlowy = gxy*velx + gyy*vely + gyz*velz
  vlowz = gxz*velx + gyz*vely + gzz*velz
  v2 = vlowx*velx + vlowy*vely + vlowz*velz

!!$ Lower the B-field, and square of the magnitude
  Bvcxlow = gxx*Bvcx + gxy*Bvcy + gxz*Bvcz
  Bvcylow = gxy*Bvcx + gyy*Bvcy + gyz*Bvcz
  Bvczlow = gxz*Bvcx + gyz*Bvcy + gzz*Bvcz
  Bvc2 = Bvcxlow*Bvcx + Bvcylow*Bvcy + Bvczlow*Bvcz

  Bdotv = Bvcxlow*velx + Bvcylow*vely + Bvczlow*velz
  w = w_lorentz

  b2=Bvc2/w**2+Bdotv**2

 
!!$ rhohstar is the term that appears in Tmunu as well = rho*enth + b^2
  rhohstar = rho*(1.0+eps)+press+b2

!!$ Alfven velocity squared
  va2 = b2/(rhohstar)

!!$ The following combination always comes up in the wavespeed calculation:
!!$ U2 = v_a^2 + c_s^2(1-v_a^2)
!!$ In the unmagnetized case, it reduces to cs2
  U2 = va2+cs2*(1.d0-va2)

!!$  Calculate eigenvalues

  lam1 = velx - beta/alp
  lam2 = velx - beta/alp
  lam3 = velx - beta/alp
  lamp_nobeta = (velx*(one-U2) + sqrt(U2*(one-v2)*&
       (u*(one-v2*U2) - velx**2*(one-U2))))/(one-v2*U2)
  lamm_nobeta = (velx*(one-U2) - sqrt(U2*(one-v2)*&
       (u*(one-v2*U2) - velx**2*(one-U2))))/(one-v2*U2)

  lamp = lamp_nobeta - beta/alp
  lamm = lamm_nobeta - beta/alp

  lam(1) = lamm
  lam(2) = lam1
  lam(3) = lam2
  lam(4) = lam3
  lam(5) = lamp

end subroutine eigenvaluesM_hot
 
!!$ WE need to implement eigenproblem and eigenproblem_leftright!!!!


 /*@@
   @routine    eigenvalues_generalM
   @date       Aug 30, 2010
   @author     Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke
   @desc
   Computes the eigenvalues of the Jacobian matrix evaluated
   at the given state.
   @enddesc
   @calls
   @calledby
   @history
   Culled from the routines in GR3D, author Mark Miller.
   @endhistory

@@*/

subroutine eigenvalues_generalM(&
     velx,vely,velz,cs2,va2,&
     lam,&
     gxx,gxy,gxz,gyy,gyz,gzz,&
     u,alp,beta)

  implicit none

  DECLARE_CCTK_PARAMETERS

  CCTK_REAL velx,vely,velz
  CCTK_REAL lam(5)
  CCTK_REAL gxx,gxy,gxz,gyy,gyz,gzz
  CCTK_REAL alp,beta,u,U2

  CCTK_REAL cs2,va2,one,two
  CCTK_REAL vlowx,vlowy,vlowz,v2,w
  CCTK_REAL lam1,lam2,lam3,lamm,lamp,lamm_nobeta,lamp_nobeta

  one = 1.0d0
  two = 2.0d0

!!$  Set required fluid quantities

  vlowx = gxx*velx + gxy*vely + gxz*velz
  vlowy = gxy*velx + gyy*vely + gyz*velz
  vlowz = gxz*velx + gyz*vely + gzz*velz
  v2 = vlowx*velx + vlowy*vely + vlowz*velz

  w = one / sqrt(one - v2)

  U2 = va2+cs2*(1-va2)

!!$  Calculate eigenvalues

  lam1 = velx - beta/alp
  lam2 = velx - beta/alp
  lam3 = velx - beta/alp
  lamp_nobeta = (velx*(one-U2) + sqrt(U2*(one-v2)*&
       (u*(one-v2*U2) - velx**2*(one-U2))))/(one-v2*U2)
  lamm_nobeta = (velx*(one-U2) - sqrt(U2*(one-v2)*&
       (u*(one-v2*U2) - velx**2*(one-U2))))/(one-v2*U2)

  lamp = lamp_nobeta - beta/alp
  lamm = lamm_nobeta - beta/alp

  lam(1) = lamm
  lam(2) = lam1
  lam(3) = lam2
  lam(4) = lam3
  lam(5) = lamp

end subroutine eigenvalues_generalM


!!$ We'll need to implement eigenproblem_general

end module GRHydro_EigenproblemM