aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_Con2PrimM_pt_EOSOmniold.c
diff options
context:
space:
mode:
authorrhaas <rhaas@c83d129a-5a75-4d5a-9c4d-ed3a5855bf45>2013-05-11 06:29:34 +0000
committerrhaas <rhaas@c83d129a-5a75-4d5a-9c4d-ed3a5855bf45>2013-05-11 06:29:34 +0000
commit007c18aa5e6aed27c7edbf71b1f03267c0ffef9d (patch)
tree6d9c4331bcf20e8fc4f7fc2ab4fbb6802b2293a0 /src/GRHydro_Con2PrimM_pt_EOSOmniold.c
parentd73ce95f867e1a041cc51b82a954b6578e24610c (diff)
GRHydro: Fixing Con2PrimM to call the proper point-wise routines
This re-introduces routines that work for hybrid/hot EOS and corresponding changes in pointwise routines for hot EOS error checking and temperature treatment by adding old EOSOmni pointwise routine. From: Philipp Moesta <pmoesta@tapir.caltech.edu> git-svn-id: http://svn.einsteintoolkit.org/cactus/EinsteinEvolve/GRHydro/trunk@511 c83d129a-5a75-4d5a-9c4d-ed3a5855bf45
Diffstat (limited to 'src/GRHydro_Con2PrimM_pt_EOSOmniold.c')
-rw-r--r--src/GRHydro_Con2PrimM_pt_EOSOmniold.c1056
1 files changed, 1056 insertions, 0 deletions
diff --git a/src/GRHydro_Con2PrimM_pt_EOSOmniold.c b/src/GRHydro_Con2PrimM_pt_EOSOmniold.c
new file mode 100644
index 0000000..0eb4845
--- /dev/null
+++ b/src/GRHydro_Con2PrimM_pt_EOSOmniold.c
@@ -0,0 +1,1056 @@
+/***********************************************************************************
+ Copyright 2006 Scott C. Noble, Charles F. Gammie, Jonathan C. McKinney,
+ and Luca Del Zanna.
+
+ PVS_GRMHD
+
+ This file was derived from PVS_GRMHD. The authors of PVS_GRMHD include
+ Scott C. Noble, Charles F. Gammie, Jonathan C. McKinney, and Luca Del Zanna.
+ PVS_GRMHD is available under the GPL from:
+ http://rainman.astro.uiuc.edu/codelib/
+
+ You are morally obligated to cite the following paper in his/her
+ scientific literature that results from use of this file:
+
+ [1] Noble, S. C., Gammie, C. F., McKinney, J. C., \& Del Zanna, L. \ 2006,
+ Astrophysical Journal, 641, 626.
+
+ PVS_GRMHD is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ PVS_GRMHD is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with PVS_GRMHD; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+
+ If the user has any questions, please direct them to Scott C. Noble at
+ scn@astro.rit.edu .
+
+***********************************************************************************/
+
+
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdarg.h>
+#include <string.h>
+#include <math.h>
+#include <float.h>
+#include <complex.h>
+
+#include "cctk.h"
+#include "cctk_Parameters.h"
+
+/* Set this to be 1 if you want debug output */
+#define DEBUG_CON2PRIMM (0)
+
+
+/* Adiabatic index used for the state equation */
+
+#define MAX_NEWT_ITER (30) /* Max. # of Newton-Raphson iterations for find_root_2D(); */
+#define NEWT_TOL (1.0e-10) /* Min. of tolerance allowed for Newton-Raphson iterations */
+#define MIN_NEWT_TOL (1.0e-10) /* Max. of tolerance allowed for Newton-Raphson iterations */
+#define EXTRA_NEWT_ITER (2)
+
+#define NEWT_TOL2 (1.0e-15) /* TOL of new 1D^*_{v^2} gnr2 method */
+#define MIN_NEWT_TOL2 (1.0e-10) /* TOL of new 1D^*_{v^2} gnr2 method */
+
+#define W_TOO_BIG (1.e20) /* \gamma^2 (\rho_0 + u + p) is assumed
+ to always be smaller than this. This
+ is used to detect solver failures */
+
+#define FAIL_VAL (1.e30) /* Generic value to which we set variables when a problem arises */
+
+/**************************************************
+ The following functions assume a Gamma-law EOS:
+***************************************************/
+
+/* Local Globals */
+struct LocGlob {
+ CCTK_REAL Bsq,QdotBsq,Qtsq,Qdotn,D,half_Bsq ;
+} ;
+
+struct eosomnivars {
+ CCTK_INT eoshandle,eoskeytemp;
+ CCTK_REAL prec,eosprec,eos_y_e[1],eos_temp[1];
+ CCTK_INT eoskeyerr[1],eosanyerr[1];
+} ;
+
+// Declarations:
+static CCTK_REAL vsq_calc(CCTK_REAL W, struct LocGlob *lgp);
+
+static CCTK_INT twod_newton_raphson( CCTK_REAL x[], CCTK_REAL gammaeos, struct LocGlob *lgp,
+ void (*funcd) (CCTK_REAL [], CCTK_REAL [],
+ CCTK_REAL [], CCTK_REAL [][2],
+ CCTK_REAL *, CCTK_REAL *, CCTK_REAL, struct LocGlob *) );
+
+static CCTK_INT threed_newton_raphson_omni( CCTK_REAL x[], struct eosomnivars *eosvars, struct LocGlob *lgp,
+ void (*funcd) (CCTK_REAL [], CCTK_REAL [],
+ CCTK_REAL [], CCTK_REAL [][3],
+ CCTK_REAL *, CCTK_REAL *,
+ struct eosomnivars *eosvars, struct LocGlob *) );
+
+static void func_vsq( CCTK_REAL [], CCTK_REAL [], CCTK_REAL [], CCTK_REAL [][2],
+ CCTK_REAL *f, CCTK_REAL *df, CCTK_REAL gammaeos, struct LocGlob *lgp);
+
+static void func_vsq_eosomni( CCTK_REAL [], CCTK_REAL [], CCTK_REAL [], CCTK_REAL [][3],
+ CCTK_REAL *f, CCTK_REAL *df, struct eosomnivars *eosvars, struct LocGlob *lgp);
+
+static CCTK_REAL x1_of_x0(CCTK_REAL x0, struct LocGlob *lgp ) ;
+
+
+// EOS STUFF:
+static CCTK_REAL eos_info(CCTK_REAL W, CCTK_REAL vsq, CCTK_REAL *dpdw, CCTK_REAL *dpdvsq, CCTK_REAL gammaeos, struct LocGlob *lgp);
+static CCTK_REAL eos_info_eosomni(CCTK_REAL W, CCTK_REAL vsq, CCTK_REAL eps0, struct LocGlob *lgp);
+
+/* pressure as a function of rho0 and u */
+//static CCTK_REAL pressure_rho0_u(CCTK_REAL rho0, CCTK_REAL u, CCTK_REAL gammaeos)
+//{
+// return((gammaeos - 1.)*u) ;
+//}
+
+static CCTK_REAL pressure_rho0_eps_eosomni(CCTK_REAL rho0, CCTK_REAL eps, CCTK_REAL* dpdrho, CCTK_REAL* dpdeps, struct eosomnivars *eosvars);
+
+/* Pressure as a function of rho0 and w = rho0 + u + p */
+static CCTK_REAL pressure_rho0_w(CCTK_REAL rho0, CCTK_REAL w,CCTK_REAL gammaeos)
+{
+ return((gammaeos-1.)*(w - rho0)/gammaeos) ;
+}
+
+void CCTK_FCALL CCTK_FNAME(GRHydro_Con2PrimM_pt2) (
+ CCTK_INT *handle, CCTK_INT *keytemp, CCTK_REAL *eos_prec, CCTK_REAL *prec,
+ CCTK_REAL *gamma_eos,
+ CCTK_REAL *dens_in,
+ CCTK_REAL *sx_in, CCTK_REAL *sy_in, CCTK_REAL *sz_in,
+ CCTK_REAL *tau_in, CCTK_REAL *Bconsx_in, CCTK_REAL *Bconsy_in, CCTK_REAL *Bconsz_in,
+ CCTK_REAL *y_e_in, CCTK_REAL *temp_in,
+ CCTK_REAL *rho,
+ CCTK_REAL *velx, CCTK_REAL *vely, CCTK_REAL *velz,
+ CCTK_REAL *epsilon, CCTK_REAL *pressure,
+ CCTK_REAL *Bx, CCTK_REAL *By, CCTK_REAL *Bz, CCTK_REAL *bsq,
+ CCTK_REAL *w_lorentz,
+ CCTK_REAL *gxx, CCTK_REAL *gxy, CCTK_REAL *gxz,
+ CCTK_REAL *gyy, CCTK_REAL *gyz, CCTK_REAL *gzz,
+ CCTK_REAL *uxx, CCTK_REAL *uxy, CCTK_REAL *uxz,
+ CCTK_REAL *uyy, CCTK_REAL *uyz, CCTK_REAL *uzz,
+ CCTK_REAL *det,
+ CCTK_INT *epsnegative,
+ CCTK_REAL *retval);
+
+/**********************************************************************/
+/**********************************************************************************
+
+ Con2PrimM_pt():
+ -----------------------------
+
+ -- Attempts an inversion from GRMHD conserved variables to primitive variables assuming a guess.
+
+ -- Uses the 2D method of Noble et al. (2006):
+ -- Solves for two independent variables (W,v^2) via a 2D
+ Newton-Raphson method
+ -- Can be used (in principle) with a general equation of state.
+
+ -- Minimizes two residual functions using a homemade Newton-Raphson routine.
+ -- It is homemade so that it can catch exceptions and handle them correctly, plus it is
+ optimized for this particular problem.
+
+ -- Note that the notation used herein is that of Noble et al. (2006) except for the argument
+ list.
+
+
+INPUT: (using GRHydro variable defintions)
+
+ s[x,y,z] = scons[0,1,2] = \alpha \sqrt(\gamma) T^0_i
+ dens, tau = as defined in GRHydro and are assumed to be densitized (i.e. with sqrt(\gamma))
+ dens = D = \sqrt(\gamma) W \rho
+ tau = \alpha^2 \sqrt(\gamma) T^{00} - D
+ g[x,y,z][x,y,x] = spatial metric corresponding to \gamma
+ u[x,y,z][x,y,z] = inverse of the spatial metric, g[x,y,z][x,y,x]
+ det = sqrt(\gamma)
+ B[x,y,z] = Bvec[0,1,2]
+ bsq = b^\mu b_\mu
+
+ epsnegative = (integer)
+ = 0 if rho and epsilon are positive
+ != 0 otherwise
+
+
+ -- (users should set B[x,y,z] = 0 for hydrodynamic runs)
+
+
+OUTPUT: (using GRHydro variable defintions)
+ rho, eps = as defined in GRHydro, primitive variables
+ vel[x,y,z] = as defined in GRHydro, primitive variables
+
+
+RETURN VALUE: of retval = (i*100 + j) where
+ i = 0 -> Newton-Raphson solver either was not called (yet or not used)
+ or returned successfully;
+ 1 -> Newton-Raphson solver did not converge to a solution with the
+ given tolerances;
+ 2 -> Newton-Raphson procedure encountered a numerical divergence
+ (occurrence of "nan" or "+/-inf" ;
+
+ j = 0 -> success
+ 1 -> failure: some sort of failure in Newton-Raphson;
+ 2 -> failure: unphysical vsq = v^2 value at initial guess;
+ 3 -> failure: W<0 or W>W_TOO_BIG
+ 4 -> failure: v^2 > 1
+ ( used to be 5 -> failure: rho,uu <= 0 but now sets epsnegative to non-zero )
+
+**********************************************************************************/
+
+
+void CCTK_FCALL CCTK_FNAME(GRHydro_Con2PrimM_pt2) (
+ CCTK_INT *handle, CCTK_INT *keytemp, CCTK_REAL *eos_prec, CCTK_REAL *prec,
+ CCTK_REAL *gamma_eos,
+ CCTK_REAL *dens_in,
+ CCTK_REAL *sx_in, CCTK_REAL *sy_in, CCTK_REAL *sz_in,
+ CCTK_REAL *tau_in,
+ CCTK_REAL *Bconsx_in, CCTK_REAL *Bconsy_in, CCTK_REAL *Bconsz_in,
+ CCTK_REAL *y_e_in, CCTK_REAL* temp_in,
+ CCTK_REAL *rho,
+ CCTK_REAL *velx, CCTK_REAL *vely, CCTK_REAL *velz,
+ CCTK_REAL *epsilon, CCTK_REAL *pressure,
+ CCTK_REAL *Bx, CCTK_REAL *By, CCTK_REAL *Bz,
+ CCTK_REAL *bsq,
+ CCTK_REAL *w_lorentz,
+ CCTK_REAL *gxx, CCTK_REAL *gxy, CCTK_REAL *gxz,
+ CCTK_REAL *gyy, CCTK_REAL *gyz, CCTK_REAL *gzz,
+ CCTK_REAL *uxx, CCTK_REAL *uxy, CCTK_REAL *uxz,
+ CCTK_REAL *uyy, CCTK_REAL *uyz, CCTK_REAL *uzz,
+ CCTK_REAL *det,
+ CCTK_INT *epsnegative,
+ CCTK_REAL *retval)
+
+{
+ CCTK_REAL x_3d[3];
+ CCTK_REAL sx, sy, sz;
+ CCTK_REAL usx, usy, usz;
+ CCTK_REAL tau, dens, gammaeos;
+ CCTK_REAL QdotB;
+ CCTK_REAL rho0,u,p,w,gammasq,gamma,gtmp,W_last,W,vsq;
+ CCTK_REAL g_o_WBsq, QdB_o_W;
+ CCTK_REAL detg = (*det);
+ CCTK_REAL sqrt_detg = sqrt(detg);
+ CCTK_REAL inv_sqrt_detg = 1./sqrt_detg;
+ CCTK_INT i,j, i_increase ;
+
+ DECLARE_CCTK_PARAMETERS;
+
+ struct LocGlob lg;
+ struct eosomnivars eosvars;
+
+ eosvars.eoshandle = *handle;
+ //printf("handle = %i\n",*handle);
+ eosvars.eoskeytemp = *keytemp;
+ eosvars.eosprec = *eos_prec;
+ eosvars.prec = *prec;
+ eosvars.eos_y_e[0] = *y_e_in;
+ eosvars.eos_temp[0] = *temp_in;
+ eosvars.eoskeyerr[0] = 0;
+ eosvars.eosanyerr[0] = 0;
+
+ gammaeos = *gamma_eos;
+
+ /* Assume ok initially: */
+ *retval = 0.;
+ *epsnegative = 0;
+
+#if(DEBUG_CON2PRIMM)
+ fprintf(stdout," *dens = %26.16e \n", *dens_in );
+ fprintf(stdout," *sx = %26.16e \n", *sx_in );
+ fprintf(stdout," *sy = %26.16e \n", *sy_in );
+ fprintf(stdout," *sz = %26.16e \n", *sz_in );
+ fprintf(stdout," *tau = %26.16e \n", *tau_in );
+ fprintf(stdout," *Bconsx = %26.16e \n", *Bconsx_in );
+ fprintf(stdout," *Bconsy = %26.16e \n", *Bconsy_in );
+ fprintf(stdout," *Bconsz = %26.16e \n", *Bconsz_in );
+ fprintf(stdout," *rho = %26.16e \n", *rho );
+ fprintf(stdout," *velx = %26.16e \n", *velx );
+ fprintf(stdout," *vely = %26.16e \n", *vely );
+ fprintf(stdout," *velz = %26.16e \n", *velz );
+ fprintf(stdout," *epsilon = %26.16e \n", *epsilon );
+ fprintf(stdout," *temp_in = %26.16e \n", *temp_in );
+ fprintf(stdout," *y_e_in = %26.16e \n", *y_e_in );
+ fprintf(stdout," *pressure = %26.16e \n", *pressure );
+ fprintf(stdout," *Bx = %26.16e \n", *Bx );
+ fprintf(stdout," *By = %26.16e \n", *By );
+ fprintf(stdout," *Bz = %26.16e \n", *Bz );
+ fprintf(stdout," *bsq = %26.16e \n", *bsq );
+ fprintf(stdout," *w_lorentz = %26.16e \n", *w_lorentz );
+ fprintf(stdout," *gxx = %26.16e \n", *gxx );
+ fprintf(stdout," *gxy = %26.16e \n", *gxy );
+ fprintf(stdout," *gxz = %26.16e \n", *gxz );
+ fprintf(stdout," *gyy = %26.16e \n", *gyy );
+ fprintf(stdout," *gyz = %26.16e \n", *gyz );
+ fprintf(stdout," *gzz = %26.16e \n", *gzz );
+ fprintf(stdout," *uxx = %26.16e \n", *uxx );
+ fprintf(stdout," *uxy = %26.16e \n", *uxy );
+ fprintf(stdout," *uxz = %26.16e \n", *uxz );
+ fprintf(stdout," *uyy = %26.16e \n", *uyy );
+ fprintf(stdout," *uyz = %26.16e \n", *uyz );
+ fprintf(stdout," *uzz = %26.16e \n", *uzz );
+ fprintf(stdout," *det = %26.16e \n", *det );
+ fprintf(stdout," *epsnegative = %10d \n", *epsnegative );
+ fprintf(stdout," *retval = %26.16e \n", *retval );
+ fflush(stdout);
+#endif
+
+ /* First undensitize all conserved variables : */
+ sx = ( *sx_in) * inv_sqrt_detg;
+ sy = ( *sy_in) * inv_sqrt_detg;
+ sz = ( *sz_in) * inv_sqrt_detg;
+ tau = ( *tau_in) * inv_sqrt_detg;
+ dens = (*dens_in) * inv_sqrt_detg;
+
+ usx = (*uxx)*sx + (*uxy)*sy + (*uxz)*sz;
+ usy = (*uxy)*sx + (*uyy)*sy + (*uyz)*sz;
+ usz = (*uxz)*sx + (*uyz)*sy + (*uzz)*sz;
+
+ *Bx = (*Bconsx_in) * inv_sqrt_detg;
+ *By = (*Bconsy_in) * inv_sqrt_detg;
+ *Bz = (*Bconsz_in) * inv_sqrt_detg;
+
+ // Calculate various scalars (Q.B, Q^2, etc) from the conserved variables:
+
+ lg.Bsq =
+ (*gxx) * (*Bx) * (*Bx) +
+ (*gyy) * (*By) * (*By) +
+ (*gzz) * (*Bz) * (*Bz) +
+ 2*(
+ (*gxy) * (*Bx) * (*By) +
+ (*gxz) * (*Bx) * (*Bz) +
+ (*gyz) * (*By) * (*Bz) );
+
+ QdotB = (sx * (*Bx) + sy * (*By) + sz * (*Bz)) ;
+ lg.QdotBsq = QdotB*QdotB ;
+
+ lg.Qdotn = -(tau + dens) ;
+
+ lg.Qtsq = (usx * sx + usy * sy + usz * sz) ;
+
+ lg.D = dens;
+
+ lg.half_Bsq = 0.5*lg.Bsq;
+
+ /* calculate W from last timestep and use for guess */
+ vsq =
+ (*gxx) * (*velx) * (*velx) +
+ (*gyy) * (*vely) * (*vely) +
+ (*gzz) * (*velz) * (*velz) +
+ 2*(
+ (*gxy) * (*velx) * (*vely) +
+ (*gxz) * (*velx) * (*velz) +
+ (*gyz) * (*vely) * (*velz) );
+
+ if( (vsq < 0.) && (fabs(vsq) < 1.0e-13) ) {
+ vsq = fabs(vsq);
+ }
+ if(vsq < 0. || vsq > 1. ) {
+ *retval = 2.;
+ fprintf(stdout," *retval = %26.16e \n", *retval );
+ return;
+ }
+
+ gammasq = 1. / (1. - vsq);
+ gamma = sqrt(gammasq);
+
+ // Always calculate rho from D and gamma so that using D in EOS remains consistent
+ // i.e. you don't get positive values for dP/d(vsq) .
+ rho0 = lg.D / gamma ;
+ u = (*epsilon) * rho0;
+ CCTK_REAL uold = u;
+
+ CCTK_REAL dum1,dum2;
+ p = pressure_rho0_eps_eosomni(rho0,*epsilon,&dum1,&dum2,&eosvars) ; // EOSOMNI
+ // p = pressure_rho0_u(rho0,u,gammaeos) ; // EOS
+ w = rho0 + u + p ;
+
+ W_last = w*gammasq ;
+
+ //fprintf(stdout," p = %26.16e \n", p );
+
+ // Make sure that W is large enough so that v^2 < 1 :
+ i_increase = 0;
+ while( (( W_last*W_last*W_last * ( W_last + 2.*lg.Bsq )
+ - lg.QdotBsq*(2.*W_last + lg.Bsq) ) <= W_last*W_last*(lg.Qtsq-lg.Bsq*lg.Bsq))
+ && (i_increase < 10) ) {
+ W_last *= 10.;
+ i_increase++;
+ }
+
+ // Calculate W and vsq:
+ x_3d[0] = fabs( W_last );
+ x_3d[1] = x1_of_x0( W_last, &lg ) ;
+
+ //Use 2d NR for polytropes!
+ if (*handle==1 || *handle==2) {
+ *retval = 1.0*twod_newton_raphson( x_3d, gammaeos, &lg, func_vsq ) ;
+
+ } else {
+ //USE 3d NR for non-polytropes!
+ x_3d[2] = u;
+ *retval = 1.0*threed_newton_raphson_omni( x_3d, &eosvars, &lg, func_vsq_eosomni ) ;
+ }
+
+ W = x_3d[0];
+ vsq = x_3d[1];
+
+ /* Problem with solver, so return denoting error before doing anything further */
+ if( ((*retval) != 0.) || (W == FAIL_VAL) ) {
+ *retval = *retval*100.+1.;
+ fprintf(stdout," *retval = %26.16e \n", *retval );
+ return;
+ }
+ else{
+ if(W <= 0. || W > W_TOO_BIG) {
+ *retval = 3.;
+ fprintf(stdout," *retval = %26.16e \n", *retval );
+ return;
+ }
+ }
+
+ // Calculate v^2:
+ if( vsq >= 1. ) {
+ *retval = 4.;
+ fprintf(stdout," *retval = %26.16e \n", *retval );
+ return;
+ }
+
+ // Recover the primitive variables from the scalars and conserved variables:
+ gtmp = sqrt(1. - vsq);
+ gamma = 1./gtmp ;
+ rho0 = lg.D * gtmp;
+
+ w = W * (1. - vsq) ;
+
+ if (*handle==1 || *handle==2) {
+ p = pressure_rho0_w(rho0,w,gammaeos) ; // EOS
+ u = w - (rho0 + p) ;
+ *epsilon = u / rho0;
+ } else {
+ u=x_3d[2];
+ *epsilon = u/rho0;
+ p = pressure_rho0_eps_eosomni(rho0,*epsilon,&dum1,&dum2,&eosvars) ; // EOSOMNI
+ // printf("%g %g %g %g\n",rho0,u,*epsilon,p);
+ }
+
+ // User may want to handle this case differently, e.g. do NOT return upon
+ // a negative rho/u, calculate v^i so that rho/u can be floored by other routine:
+ if( (rho0 <= 0.) || (u <= 0.) ) {
+ *epsnegative = 1;
+ fprintf(stdout," *epsnegative = %10d \n", *epsnegative );
+ fprintf(stdout," rho0 = %26.16e \n", rho0 );
+ fprintf(stdout," u = %26.16e \n", u );
+ fprintf(stdout," W = %26.16e \n", W );
+ fprintf(stdout," vsq = %26.16e \n", vsq );
+ fprintf(stdout," uold = %26.16e \n", uold );
+ return;
+ }
+
+ *rho = rho0;
+ *w_lorentz = gamma;
+ *pressure = p ;
+
+ g_o_WBsq = 1./(W+lg.Bsq);
+ QdB_o_W = QdotB / W;
+ *bsq = lg.Bsq * (1.-vsq) + QdB_o_W*QdB_o_W;
+
+ *velx = g_o_WBsq * ( usx + QdB_o_W*(*Bx) ) ;
+ *vely = g_o_WBsq * ( usy + QdB_o_W*(*By) ) ;
+ *velz = g_o_WBsq * ( usz + QdB_o_W*(*Bz) ) ;
+
+ if (*rho <= rho_abs_min*(1.0+GRHydro_atmo_tolerance) ) {
+ *rho = rho_abs_min;
+ *velx = 0.0;
+ *vely = 0.0;
+ *velz = 0.0;
+ *w_lorentz = 1.0;
+ }
+
+#if(DEBUG_CON2PRIMM)
+ fprintf(stdout,"rho = %26.16e \n",*rho );
+ fprintf(stdout,"epsilon = %26.16e \n",*epsilon );
+ fprintf(stdout,"pressure = %26.16e \n",*pressure );
+ fprintf(stdout,"w_lorentz = %26.16e \n",*w_lorentz);
+ fprintf(stdout,"bsq = %26.16e \n",*bsq );
+ fprintf(stdout,"velx = %26.16e \n",*velx );
+ fprintf(stdout,"vely = %26.16e \n",*vely );
+ fprintf(stdout,"velz = %26.16e \n",*velz );
+ fprintf(stdout,"gammaeos = %26.16e \n",gammaeos );
+ fflush(stdout);
+#endif
+
+ /* done! */
+ return;
+
+}
+
+
+/**********************************************************************/
+/****************************************************************************
+ vsq_calc():
+
+ -- evaluate v^2 (spatial, normalized velocity) from
+ W = \gamma^2 w
+
+****************************************************************************/
+static CCTK_REAL vsq_calc(CCTK_REAL W, struct LocGlob *lgp)
+{
+ CCTK_REAL Wsq,Xsq,Bsq_W;
+
+ Wsq = W*W ;
+ Bsq_W = (lgp->Bsq + W);
+ Xsq = Bsq_W * Bsq_W;
+
+ return( ( Wsq * lgp->Qtsq + lgp->QdotBsq * (Bsq_W + W)) / (Wsq*Xsq) );
+}
+
+
+/********************************************************************
+
+ x1_of_x0():
+
+ -- calculates v^2 from W with some physical bounds checking;
+ -- asumes x0 is already physical
+ -- makes v^2 physical if not;
+
+*********************************************************************/
+
+static CCTK_REAL x1_of_x0(CCTK_REAL x0, struct LocGlob *lgp )
+{
+ CCTK_REAL x1,vsq;
+ CCTK_REAL dv = 1.e-15;
+
+ vsq = fabs(vsq_calc(x0,lgp)) ; // guaranteed to be positive
+
+ return( ( vsq > 1. ) ? (1.0 - dv) : vsq );
+
+}
+
+/********************************************************************
+
+ validate_x():
+
+ -- makes sure that x[0,1] have physical values, based upon
+ their definitions:
+
+*********************************************************************/
+
+static void validate_x(CCTK_REAL x[2], CCTK_REAL x0[2] )
+{
+
+ const CCTK_REAL dv = 1.e-15;
+
+ /* Always take the absolute value of x[0] and check to see if it's too big: */
+ x[0] = fabs(x[0]);
+ x[0] = (x[0] > W_TOO_BIG) ? x0[0] : x[0];
+
+ x[1] = (x[1] < 0.) ? 0. : x[1]; /* if it's too small */
+ x[1] = (x[1] > 1.) ? (1. - dv) : x[1]; /* if it's too big */
+
+ return;
+
+}
+
+/************************************************************
+
+ twod_newton_raphson():
+
+ -- performs Newton-Rapshon method on an 2d system for polytropes.
+
+ -- inspired in part by Num. Rec.'s routine newt();
+
+*****************************************************************/
+static CCTK_INT twod_newton_raphson( CCTK_REAL x[], CCTK_REAL gammaeos, struct LocGlob *lgp,
+ void (*funcd) (CCTK_REAL [], CCTK_REAL [], CCTK_REAL [],
+ CCTK_REAL [][2], CCTK_REAL *,
+ CCTK_REAL *, CCTK_REAL, struct LocGlob *) )
+{
+ CCTK_REAL f, df, dx[2], x_old[2];
+ CCTK_REAL resid[2], jac[2][2];
+ CCTK_REAL errx, x_orig[2];
+ CCTK_INT n_iter, id, jd, i_extra, doing_extra;
+ CCTK_REAL dW,dvsq,vsq_old,vsq,W,W_old;
+ const CCTK_REAL dv = (1.-1.e-15);
+
+ CCTK_INT keep_iterating;
+
+
+ // Initialize various parameters and variables:
+ errx = 1. ;
+ df = f = 1.;
+ i_extra = doing_extra = 0;
+ x_old[0] = x_orig[0] = x[0] ;
+ x_old[1] = x_orig[1] = x[1] ;
+
+ vsq_old = vsq = W = W_old = 0.;
+ n_iter = 0;
+
+ /* Start the Newton-Raphson iterations : */
+ keep_iterating = 1;
+ while( keep_iterating ) {
+
+ (*funcd) (x, dx, resid, jac, &f, &df, gammaeos, lgp); /* returns with new dx, f, df */
+
+
+ /* Save old values before calculating the new: */
+ errx = 0.;
+ x_old[0] = x[0] ;
+ x_old[1] = x[1] ;
+
+ /* Make the newton step: */
+ x[0] += dx[0] ;
+ x[1] += dx[1] ;
+
+ /****************************************/
+ /* Calculate the convergence criterion */
+ /****************************************/
+ errx = (x[0]==0.) ? fabs(dx[0]) : fabs(dx[0]/x[0]);
+
+
+ /****************************************/
+ /* Make sure that the new x[] is physical : */
+ /****************************************/
+ if( x[0] < 0. ) { x[0] = fabs(x[0]); }
+ else {
+ if(x[0] > W_TOO_BIG) { x[0] = x_old[0] ; }
+ }
+
+ if( x[1] < 0. ) { x[1] = 0.; }
+ else {
+ if( x[1] > 1. ) { x[1] = dv; }
+ }
+
+ /*****************************************************************************/
+ /* If we've reached the tolerance level, then just do a few extra iterations */
+ /* before stopping */
+ /*****************************************************************************/
+
+ if( (fabs(errx) <= NEWT_TOL) && (doing_extra == 0) && (EXTRA_NEWT_ITER > 0) ) {
+ doing_extra = 1;
+ }
+
+ if( doing_extra == 1 ) i_extra++ ;
+
+ if( ((fabs(errx) <= NEWT_TOL)&&(doing_extra == 0))
+ || (i_extra > EXTRA_NEWT_ITER) || (n_iter >= (MAX_NEWT_ITER-1)) ) {
+ keep_iterating = 0;
+ }
+
+ n_iter++;
+
+ } // END of while(keep_iterating)
+
+
+ /* Check for bad untrapped divergences : */
+ if( (!finite(f)) || (!finite(df)) ) {
+ return(2);
+ }
+
+
+ if( fabs(errx) <= NEWT_TOL ){
+ return(0);
+ }
+ else if( (fabs(errx) <= MIN_NEWT_TOL) && (fabs(errx) > NEWT_TOL) ){
+ return(0);
+ }
+ else {
+ return(1);
+ }
+
+ return(0);
+
+}
+
+
+/************************************************************
+
+ threed_newton_raphson_omni():
+
+ -- performs Newton-Rapshon method on an 2d system for polytropes.
+
+ -- inspired in part by Num. Rec.'s routine newt();
+
+*****************************************************************/
+static CCTK_INT threed_newton_raphson_omni( CCTK_REAL x[], struct eosomnivars *eosvars, struct LocGlob *lgp,
+ void (*funcd) (CCTK_REAL [], CCTK_REAL [], CCTK_REAL [],
+ CCTK_REAL [][3], CCTK_REAL *,
+ CCTK_REAL *, struct eosomnivars *, struct LocGlob *) )
+{
+ CCTK_REAL f, df, dx[3], x_old[3];
+ CCTK_REAL resid[3], jac[3][3];
+ CCTK_REAL errx, x_orig[3];
+ CCTK_INT n_iter, id, jd, i_extra, doing_extra;
+ CCTK_REAL dW,dvsq,du,vsq_old,vsq,W,W_old,u,u_old;
+ const CCTK_REAL dv = (1.-1.e-15);
+
+ CCTK_INT keep_iterating;
+
+
+ // Initialize various parameters and variables:
+ errx = 1. ;
+ df = f = 1.;
+ i_extra = doing_extra = 0;
+ x_old[0] = x_orig[0] = x[0] ;
+ x_old[1] = x_orig[1] = x[1] ;
+ x_old[2] = x_orig[2] = x[2] ;
+
+ vsq_old = vsq = W = W_old = u = u_old = 0.;
+ n_iter = 0;
+
+ /* Start the Newton-Raphson iterations : */
+ keep_iterating = 1;
+ while( keep_iterating ) {
+
+ (*funcd) (x, dx, resid, jac, &f, &df, eosvars, lgp); /* returns with new dx, f, df */
+
+ /* Save old values before calculating the new: */
+ errx = 0.;
+ x_old[0] = x[0] ;
+ x_old[1] = x[1] ;
+ x_old[2] = x[2] ;
+
+ /* Make the newton step: */
+ x[0] += dx[0] ;
+ x[1] += dx[1] ;
+ x[2] += dx[2] ;
+
+ //printf("Updating vars: %g %g %g %g %g %g\n",x[0],dx[0],x[1],dx[1],x[2],dx[2]);
+
+ /****************************************/
+ /* Calculate the convergence criterion */
+ /****************************************/
+ errx = (x[0]==0.) ? fabs(dx[0]) : fabs(dx[0]/x[0]);
+
+
+ /****************************************/
+ /* Make sure that the new x[] is physical : */
+ /****************************************/
+ if( x[0] < 0. ) { x[0] = fabs(x[0]); }
+ else {
+ if(x[0] > W_TOO_BIG) { x[0] = x_old[0] ; }
+ }
+
+ if( x[1] < 0. ) { x[1] = 0.; }
+ else {
+ if( x[1] > 1. ) { x[1] = dv; }
+ }
+
+ if( x[2] < 0. ) { x[2] = 0.; }
+
+ /*****************************************************************************/
+ /* If we've reached the tolerance level, then just do a few extra iterations */
+ /* before stopping */
+ /*****************************************************************************/
+
+ if( (fabs(errx) <= NEWT_TOL) && (doing_extra == 0) && (EXTRA_NEWT_ITER > 0) ) {
+ doing_extra = 1;
+ }
+
+ if( doing_extra == 1 ) i_extra++ ;
+
+ if( ((fabs(errx) <= NEWT_TOL)&&(doing_extra == 0))
+ || (i_extra > EXTRA_NEWT_ITER) || (n_iter >= (MAX_NEWT_ITER-1)) ) {
+ keep_iterating = 0;
+ }
+
+ n_iter++;
+
+ } // END of while(keep_iterating)
+
+
+ /* Check for bad untrapped divergences : */
+ if( (!finite(f)) || (!finite(df)) ) {
+ return(2);
+ }
+
+
+ if( fabs(errx) <= eosvars->prec ){
+ return(0);
+ }
+ else if( (fabs(errx) <= eosvars->prec) && (fabs(errx) > eosvars->prec) ){
+ return(0);
+ }
+ //if( fabs(errx) <= NEWT_TOL ){
+ // return(0);
+ //}
+ //else if( (fabs(errx) <= MIN_NEWT_TOL) && (fabs(errx) > NEWT_TOL) ){
+ // return(0);
+ //}
+ else {
+ return(1);
+ }
+
+ return(0);
+
+}
+
+/**********************************************************************/
+/*********************************************************************************
+ func_vsq():
+
+ -- calculates the residuals, and Newton step for general_newton_raphson();
+ -- for this method, x=W,vsq here;
+
+ Arguments:
+ x = current value of independent var's (on input & output);
+ dx = Newton-Raphson step (on output);
+ resid = residuals based on x (on output);
+ jac = Jacobian matrix based on x (on output);
+ f = resid.resid/2 (on output)
+ df = -2*f; (on output)
+ n = dimension of x[];
+ *********************************************************************************/
+
+static void func_vsq(CCTK_REAL x[], CCTK_REAL dx[], CCTK_REAL resid[],
+ CCTK_REAL jac[][2], CCTK_REAL *f, CCTK_REAL *df, CCTK_REAL gammaeos, struct LocGlob *lgp)
+{
+
+
+ CCTK_REAL W, vsq, Wsq, p_tmp, dPdvsq, dPdW;
+ CCTK_REAL res0, QB2Winv2,res1,j11,detJinv, Winv, QB2Winv3, j10, B2plusW, detJ, t36, mj01, j00;
+
+
+ W = x[0];
+ vsq = x[1];
+
+ Wsq = W*W;
+
+ p_tmp = eos_info(W, vsq, &dPdW, &dPdvsq, gammaeos, lgp);
+
+ // These expressions were calculated using Mathematica, but made into efficient
+ // code using Maple. Since we know the analytic form of the equations, we can
+ // explicitly calculate the Newton-Raphson step:
+
+ //j11 = dP/dv^2-B^2/2
+ j11 = -lgp->half_Bsq+dPdvsq;
+
+ B2plusW = lgp->Bsq+W;
+
+ //mj01 is B2plusW squared = - (partial Eq. 4 / partial v^2)
+ mj01 = B2plusW*B2plusW;
+
+ Winv = 1/W;
+
+ QB2Winv2 = lgp->QdotBsq*Winv*Winv;
+
+ //Eq. 4 - Residual 0: Qtsq - v^2(B^2+W)^2 -QdotBsq(B^2+2W)/W^2
+ res0 = lgp->Qtsq-vsq*mj01+QB2Winv2*(lgp->Bsq+W+W);
+
+ //Eq. 5 - Residual 1: -Qdotn - B^2/2(1+v^2)+1/2 QdotBsq/W^2 - W+p
+ res1 = -lgp->Qdotn-lgp->half_Bsq*(1.0+vsq)+0.5*QB2Winv2-W+p_tmp;
+
+ QB2Winv3 = QB2Winv2*Winv;
+
+ //j10 is -QB2Winv3 - 1 + dp/dW - (partial Eq. 5 / partial W)
+ j10 = -1.0+dPdW-QB2Winv3;
+
+ //This is detJ: j10*mj01/B2W + -2 j11 * -j00/2
+ detJ = B2plusW*(j10*B2plusW+(lgp->Bsq-2.0*dPdvsq)*(QB2Winv2+vsq*W)*Winv);
+
+ detJinv = 1/detJ;
+
+ // - (Jinv00 * res0 + Jinv01 * res 1)/detJ
+ dx[0] = -(j11*res0+mj01*res1)*detJinv;
+
+ //j00 is -2v^2(B^2+W)-2QB2 (B2+W)/W^3 - (partial Eq. 4 / partial W)
+ j00 = -2*(vsq+QB2Winv3)*B2plusW;
+
+ // (-Jinv10 * res0 -Jinv11 * res1) / DetJ
+ dx[1] = (j10*res0-j00*res1)*detJinv;
+ // detJ = B2plusW*detJ_gcf;
+ jac[0][0] = j00;
+ jac[0][1] = -mj01;
+ jac[1][0] = j10;
+ jac[1][1] = j11;
+ resid[0] = res0;
+ resid[1] = res1;
+
+ *df = -resid[0]*resid[0] - resid[1]*resid[1];
+
+ *f = -0.5 * ( *df );
+
+}
+
+/**********************************************************************/
+/*********************************************************************************
+ func_vsq_eosomni():
+
+ -- calculates the residuals, and Newton step for general_newton_raphson();
+ -- for this method, x=W,vsq,u here;
+
+ Arguments:
+ x = current value of independent var's (on input & output);
+ dx = Newton-Raphson step (on output);
+ resid = residuals based on x (on output);
+ jac = Jacobian matrix based on x (on output);
+ f = resid.resid/2 (on output)
+ df = -2*f; (on output)
+ n = dimension of x[];
+ *********************************************************************************/
+
+static void func_vsq_eosomni(CCTK_REAL x[], CCTK_REAL dx[], CCTK_REAL resid[],
+ CCTK_REAL jac[][3], CCTK_REAL *f, CCTK_REAL *df,
+ struct eosomnivars *eosvars, struct LocGlob *lgp)
+{
+
+ CCTK_REAL W, vsq, u, p_tmp,epsilon,Wsq, dPdvsq, dPdW;
+ CCTK_REAL res0, LorInv, rho0, Winv, QB2Winv2, drho0_dv, res1, j11, detJ,detJinv;
+ CCTK_REAL QB2Winv3, j10,B2plusW,detJ_gcf,t36,B2plusW_sq, j00,j01,j12,j20,j21,j22;
+ CCTK_REAL dpress_dv,dpress_du,dpdrho,dpdeps,c00,c01,c02,c10,c11,c12,c20,c21,c22;
+
+
+ W = x[0];
+ vsq = x[1];
+ u = x[2];
+
+ Wsq = W*W;
+
+ LorInv = sqrt(1.0-vsq);
+ rho0 = lgp->D * LorInv;
+ epsilon = u/rho0;
+ p_tmp = pressure_rho0_eps_eosomni(rho0,epsilon,&dpdrho,&dpdeps,eosvars);
+
+ B2plusW = lgp->Bsq+W;
+ B2plusW_sq = B2plusW*B2plusW;
+ Winv = 1/W;
+ QB2Winv2 = lgp->QdotBsq*Winv*Winv;
+ QB2Winv3=QB2Winv2*Winv;
+
+ //Eq. 4: Qtsq-v^2(B^2+W)^2-QdotBsq(B^2+2W)/W^2=0 <-No u or p dependence
+
+ resid[0] = lgp->Qtsq - vsq*B2plusW_sq+QB2Winv2*(lgp->Bsq+W+W);
+
+ j00 = -2*(vsq+QB2Winv3)*B2plusW;
+ j01 = -1.0*B2plusW_sq;
+
+
+ //Eq. 5: -Qdotn - B^2(1+vsq)/2 + QdotBsq/2/W^2 - vsq W - rho_0(vsq) - u = 0
+ //rho0 = D * sqrt(1-vsq)
+
+ resid[1] = -lgp->Qdotn - lgp->half_Bsq*(1.0+vsq) + 0.5*QB2Winv2 - vsq*W - rho0 - u;
+
+ drho0_dv = -0.5*lgp->D / LorInv;
+
+ j10 = -vsq-QB2Winv3;
+ j11 = -lgp->half_Bsq - W - drho0_dv;
+
+ //Eq. 6: u+ p - W(1-vsq) + rho0 = 0 => p-W = -W vsq - rho0 - u
+
+ resid[2] = u + p_tmp - W*(1.0-vsq) + rho0;
+
+ //dp/dv = (dp/drho)u * drho/dv
+ //dp/drho_u = dp/drho_eps - eps/rho0 dpdeps
+ dpress_dv = drho0_dv*dpdrho+
+ u/2.0/lgp->D*pow(1.0-vsq,-1.5)*dpdeps;
+
+ //dp/du = 1/rho dp deps, since rho0 is function of v only
+ dpress_du=dpdeps/rho0;
+
+ jac[0][0] = j00;
+ jac[0][1] = j01;
+ jac[0][2] = 0.0;
+ jac[1][0] = j10;
+ jac[1][1] = j11;
+ jac[1][2] = -1.0;
+ jac[2][0] = vsq-1.0;
+ jac[2][1] = dpress_dv + W + drho0_dv;
+ jac[2][2] = dpress_du + 1.0;
+
+ c00 = j11*jac[2][2]+jac[2][1];
+ c01 = -1*j01*jac[2][2];
+ c02 = j01*jac[1][2];
+
+ c10 = -jac[2][0]-j10*jac[2][2];
+ c11 = j00*jac[2][2];
+ c12 = j00;
+
+ c20 = j10*jac[2][1]-j11*jac[2][0];
+ c21 = j01*jac[2][0]-j00*jac[2][1];
+ c22 = j00*j11-j01*j10;
+
+ detJ=j00*c00+j01*c10;
+ detJinv = 1/detJ;
+
+ dx[0] = -(c00*resid[0]+c01*resid[1]+c02*resid[2])*detJinv;
+ dx[1] = -(c10*resid[0]+c11*resid[1]+c12*resid[2])*detJinv;
+ dx[2] = -(c20*resid[0]+c21*resid[1]+c22*resid[2])*detJinv;
+
+ *df = -resid[0]*resid[0] - resid[1]*resid[1] - resid[2]*resid[2];
+
+ *f = -0.5 * ( *df );
+
+}
+
+
+/**********************************************************************
+ **********************************************************************
+
+ The following routines specify the equation of state. All routines
+ above here should be indpendent of EOS. If the user wishes
+ to use another equation of state, the below functions must be replaced
+ by equivalent routines based upon the new EOS.
+
+ **********************************************************************
+**********************************************************************/
+
+/**********************************************************************/
+/**********************************************************************
+ eos_info():
+
+ -- returns with all the EOS-related values needed;
+ **********************************************************************/
+static CCTK_REAL eos_info(CCTK_REAL W, CCTK_REAL vsq, CCTK_REAL *dpdw, CCTK_REAL *dpdvsq, CCTK_REAL gammaeos, struct LocGlob *lgp)
+{
+ register CCTK_REAL ftmp,gtmp;
+
+ ftmp = 1. - vsq;
+ gtmp = sqrt(ftmp);
+
+ CCTK_REAL gam_m1_o_gam = ((gammaeos-1.)/gammaeos);
+
+ *dpdw = gam_m1_o_gam * ftmp ;
+ *dpdvsq = gam_m1_o_gam * ( 0.5 * lgp->D/gtmp - W ) ;
+
+ return( gam_m1_o_gam * ( W * ftmp - lgp->D * gtmp ) ); // p
+
+}
+
+static CCTK_REAL pressure_rho0_eps_eosomni(CCTK_REAL rho,CCTK_REAL epsilon, CCTK_REAL* dpdrho, CCTK_REAL* dpdeps, struct eosomnivars *eosvars)
+{
+
+ CCTK_REAL rhopt[1],epspt[1],press[1];
+ rhopt[0]=rho;
+ epspt[0]=epsilon;
+
+ EOS_Omni_press(eosvars->eoshandle,eosvars->eoskeytemp,eosvars->eosprec,1,
+ &rho,&epsilon,eosvars->eos_temp,
+ eosvars->eos_y_e,press,eosvars->eoskeyerr,eosvars->eosanyerr);
+
+ EOS_Omni_DPressByDRho(eosvars->eoshandle,eosvars->eoskeytemp,eosvars->eosprec,1,
+ &rho,&epsilon,eosvars->eos_temp,
+ eosvars->eos_y_e,dpdrho,eosvars->eoskeyerr,eosvars->eosanyerr);
+
+ EOS_Omni_DPressByDEps(eosvars->eoshandle,eosvars->eoskeytemp,eosvars->eosprec,1,
+ &rho,&epsilon,eosvars->eos_temp,
+ eosvars->eos_y_e,dpdeps,eosvars->eoskeyerr,eosvars->eosanyerr);
+
+ return press[0];
+
+}
+
+
+/******************************************************************************
+ END
+ ******************************************************************************/
+
+
+#undef DEBUG_CON2PRIMM