aboutsummaryrefslogtreecommitdiff
path: root/doc/html/UsingF77.html
blob: 5118411b2408189b3663e3500ab3979fe01f4dd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
<html>
  <head>
    <title>IEEEIO F77 Interface</title>
  </head>
  <body bgcolor="#F0F0F0">
      <table><tr>
	  <td><img src="Images/info.gif"></td>
	  <td><h1>Fortran77</h1></td>
	</tr></table>
      <hr>
      <h1>Using the F77 Interface</h1>
      To use the F77 interface you must link to <b>ieeeio.a</b> and
    the C++ libraries using
    <DL>
      <DT><b>All machines except SGI Irix 6.4</b>
      <DD>f77</code> <i>link_line_stuff</i> <code>-L$IEEE_DIRECTORY/lib
    -lieeeio -lC -lc</code>
      <DT><b>SGI machines running Irix 6.4</b> <i>(eg. O2k and
	  Octane)</i>
      <DD>f77</code> <i>link_line_stuff</i> <code>-L$IEEE_DIRECTORY/lib
    -lieeeio -lC -lCsup -lc</code>
    </DL>
    The <code>-lC</code> and <code>-lc</code> links in the C and C++
    libraries with the fortran libraries.  Irix 6.4 also requires
    <code>-lCsup</code> for reasons I do not know.<p>
	
	If you
	also want HDF support you must also link with <b>libhdfio.a</b> and
	the usual complement of HDF libraries using
	<code>-L$HDF_DIRECTORY/lib -L$IEEE_DIRECTORY/lib -lhdfio
	  -lieeeio -lmfhdf -ldf -ljpeg -lz</code>.
      <hr>
      <h1>F77 Subroutines</h1>
      <UL>
	<LI><a href="#Opening">Opening and Closing Datafiles</a>
	<LI><a href="#Writing">Writing Datasets</a>
	<LI><a href="#Reading">Reading Datasets</a>
	<LI><a href="#Seeking">Random Access to Datasets
	    <i>(Seeking)</i></a>
	<LI><a href="#WriteAttribs">Writing Attributes</a>
	<LI><a href="#ReadAttribs">Reading Attributes</a>
	<LI><a href="#WriteAnn">Writing Annotations</a>
	<LI><a href="#ReadAnn">Reading Annotations</a>
	<LI><a href="#ReadWriteChunk">Writing and Reading in Chunks</a>
      </UL>

      <hr>
      <a name="Opening"><h2>Opening</h2></a>
      Just like the familiar <b>FILE*</b> type for F77 stdio operations, all
      IEEEIO operations require a file handle.  The type of this handle is
      INTEGER*8 (and 8-byte integer number).  The ieee_open() and hdf_open()
      routines are used to create this handle and the io_close() subroutine can
      be used to close file handles of either type.<p>
	<b>F77 Call Format</b><br>
	<code>INTEGER*8 ieee_open(CHARACTER filename(*),CHARACTER accessmode(*))</code><br>
	<code>INTEGER*8 ieee_openr(CHARACTER filename(*))</code><br>
	<code>INTEGER*8 ieee_openw(CHARACTER filename(*))</code><br>
	<code>INTEGER*8 ieee_opena(CHARACTER filename(*))</code><br>
      <DL>
	<DT><i>filename</i>:
	<DD>The name of the IEEEIO data file to
	  open.  The typical extension for these files is <i>.raw</i>.
	  <DT><i>accessmode</i>
	  <DD>This is the type of access for the file.  You can either
	  pass an accesstype option to the function or use the
	  appropriately
	  named function for the type of access you desire.
	  <UL>
	    <LI><b>openr = 'READ'</b>:<i>Opens a file in read-only mode.</i>
	    <LI><b>openw = 'WRITE'</b>:<i>Opens a file in write-only mode.  If the
		file does not exist, it will be created.  If it does exist, it will be
		truncated.</i>
	    <LI><b>opena = 'APPEND'</b>: <i>Opens a file in read/write mode.  The file
		pointer is automatically placed at the end of the file for appending,
		but random-access read operations are allowed as well.</i>
	  </UL>
      </DL>
      
      After you open the file handle you can use the same set of 
      subroutines for operations on the file regardless of whether the
      file is HDF or IEEEIO.  The libraries manage all of this internally.  So
      the open step is the only thing that is important to differentiating
      between your HDF and IEEEIO files.
      There are plans, for example, to have a SocketIO system
      that allows the data to be written out to a TCP socket instead of to a
      file for real-time simulation-visualization systems.  There are also
      plans to use this interface to drive an existing Parallel IO
      system.<p><br>
      <pre>
c The file handles are INTEGER*8's
    INTEGER*8 writer
    INTEGER*8 reader
c open a file for writing
    writer = ieee_openw('datafileout.raw')
c open an HDF file for writing
    writer = hdf_openw('datafileout.raw')
c open HDF file for reading  
    reader = hdf_openr('datafilein.raw')
c open an IEEEIO file for reading
    reader = ieee_openr('datafileout.raw')
      </pre><p>

	You can test if the file was opened successfully using the
	<b>io_isvalid()</b> function.<br>
      <pre>
    IF io_isvalid(infile).EQ.0 THEN
    	write(*) 'The file you specified does not exist or is not in a
readable format'
      </pre><br>

      To close the file, you simply use io_close.
      <pre>
   INTEGER io_close(INTEGER*8 filehandle)
      </pre>

      <hr>
      <a name="Writing"><h2>Writing</h2></a>
      To write data you simply use the method write().
      <p><b>F77 Call Format</b><br>
	<code>INTEGER io_write(INTEGER*8 filehandle,INTEGER numbertype,INTEGER rank,INTEGER
	  dimensions(*),<i>type</i> data(*))</code>
      <DL>
	<DT><i>filehandle</i>
	<DD>An open filehandle for the datafile.
	<DT><i>numbertype</i>:
	<DD>The type of the data being stored
	<i>(<a href="DataTypes.html">datatype definition</a>)</i>.  
	It can be one of
	  <UL>
	    <LI><b>INT8=0</b><br><i>CHARACTER byte</i>
	    <LI><b>INT16=1</b><br><i>INTEGER*2 short integer</i>
	    <LI><b>INT32=2</b><br><i>INTEGER*4 standard integer</i>
	    <LI><b>INT64=3</b><br><i>INTEGER*8 long integer. (note: this is not
		availible on the Intel/Windows platform)</i>
	    <LI><b>FLOAT32=4<br></b><i>REAL*4 32-bit single-precision IEEE
		float</i>
	    <LI><b>FLOAT64=5<br></b><i>REAL*8 64-bit double-precision IEEE
		float</i> 
	    <LI><b>UINT8=6</b><br><i>unsigned character</i>
	    <LI><b>UINT16=7</b><br><i>unsigned INTEGER*2 short integer</i>
	    <LI><b>UINT32=8</b><br><i>unsigned INTEGER*4 standard integer</i>
	    <LI><b>UINT64=9</b><br><i>unsigned INTEGER*8 long
		integer. (note: this is not availible on the
		Intel/Windows platform)</i>
	  </UL>
	<DT><i>rank</i>
	<DD>Number of dimensions of the dataset
	<DT><i>dimensions</i>:
	<DD>An array of <i>rank</i> integers that give the dimensions of
	  the dataset
	<DT><i>data</i>:
	<DD>Your data array. 
      </DL>
      
      So to write a sample array of data.
      <pre>
	REAL*4 myarray(40,50,60) // our bogus data array
	INTEGER i,rank
	INTEGER dims(3)
	rank=3
	dims(1)=40
	dims(2)=50
	dims(3)=60
c this is because ieeeio assumes f77 order for data 
c and c/c++ use exactly the opposite ordering for data 
c in memory.
c   create a outfile
	INTEGER*8 writer,ieee_openw
	writer = ieee_openw('datafile.raw')
	DO i=0,ndatasets
		. . . . computation . . .
c 		write a dataset 
		CALL io_write(writer,FLOAT32,rank,dims,myarray)
		. . . . you can write as many datasets as you want
	ENDDO
c then close the file 
	CALL io_close(writer) 
      </pre>

      <hr>
      <a name="Reading"><h2>Reading Data</h2></a>
      Reading is a two step process.  First you get information on
      the size and type of the data you intend to read.  This allows
      you to allocate an array of the proper size and type for the
      reading.  Then you actually read the data into a pre-allocated
      array.  The methods for this are <b>io_readInfo()</b> and
      <b>io_read()</b>.<p>
	<b>F77 Call Format</b><br>
	<code>INTEGER io_readInfo(INTEGER*8 filehandle,INTEGER numbertype,INTEGER rank,INTEGER
	  dims(*),INTEGER maxdims)</code><p>
      <DL>
	<DT><i>filehandle</i>
	<DD>A filehandle open for reading or appending.
	<DT><i>numbertype</i>:
	<DD>The type of the data being stored
	<i>(<a href="DataTypes.html">datatype definition</a>)</i>.  
	It can be one of
	  <UL>
	    <LI><b>INT8=0</b><br><i>CHARACTER type</i>
	    <LI><b>INT16=1</b><br><i>INTEGER*2 short integer</i>
	    <LI><b>INT32=2</b><br><i>INTEGER*4 standard integer</i>
	    <LI><b>INT64=3</b><br><i>INTEGER*8 long integer. (note: this is not
		availible on the Intel/Windows platform)</i>
	    <LI><b>FLOAT32=4<br></b><i>REAL*4 32-bit single-precision IEEE
		float</i>
	    <LI><b>FLOAT64=5<br></b><i>REAL*8 64-bit double-precision IEEE
		float</i> 
	    <LI><b>UINT8=6</b><br><i>unsigned CHARACTER character</i>
	    <LI><b>UINT16=7</b><br><i>unsigned INTEGER*2 short integer</i>
	    <LI><b>UINT32=8</b><br><i>unsigned INTEGER*4 standard integer</i>
	    <LI><b>UINT64=9</b><br><i>unsigned INTEGER*8 long
		integer. (note: this is not availible on the
		Intel/Windows platform)</i>
	  </UL>
	<DT><i>rank</i>
	<DD>Number of dimensions of the dataset
	<DT><i>dimensions</i>:
	<DD>An array of <i>rank</i> integers that give the dimensions
	  of the dataset
	<DT><i>maxdims</i>:
	<DD>The maximum size of the dimensions array you given it.
	  This prevents array overruns if the dataset has more
	  dimensions than you were anticipating.  It can be any positive
	  integer.
      </DL>
      This retrieves information about the datatype, rank, 
      and dimensions of the dataset to be retrieved.
      By default the maximum size of the dimensions array is 3, 
      but you can set it to be larger.<p>
	<b>F77 Call Format</b><br>
	<code>
	  INTEGER io_read(INTEGER*8 filehandle,<i>sometype</i> data(*))
	</code><p>
	This actually reads the dataset into the preallocated array
	<i>data</i>.<p>

	Another useful utility function is io_sizeof() which returns the
	number of bytes in a give IO datatype in manner analogous to the
	standard C sizeof() operator.  This may not be of consequence for most
	f77 codes.

	So for instance, to read a simple dataset, you would do
      <pre>
	INTEGER rank
	INTEGER numbertype
	INTEGER dims(3)
c Note: The "PTR" is the architecture dependent definition of
c a dynamically-allocated memory handle. (my vary from system to
c system under F77.
	PTR data
	INTEGER*8 infile,ieee_openr
	infile = ieee_openr('dataset.raw')
	io_readInfo(infile,numbertype,rank,dims)
c OK, we are assuming a 3D IO::Float32 array, 
c but you can be more sophisticated... 
c Note: The "allocate" statement is a stand-in for
c your architecture dependent dynamic memory allocation function
c for your particular system.
        data = allocate(io_nbytes(numbertype,rank,dims))
c io_nbytes() is a convenience function.. you can just as easily use
c	data = allocate(dims(1) * dims(2) * dims(3) * io_sizeof(numbertype))
	CALL io_read(infile,data) // read in the data
      </pre><p>

	Since multiple datasets can be stored in a file, you can
	retrieve them in the order they were written <i>(there is a <a
	    href="#Seeking">seek()</a> function that allows random access as
	  well)</i>.  The method <b>io_readinfo()</b> implies reading the next
	dataset stored in the file.  The method <b>io_numdata()</b> tells how
	many datasets are in a file. So typically if you want to read all
	datasets in a file in order, you would use code similar to;
      <pre>
	INTEGER*8 infile,ieee_openr
	infile = ieee_openr('dataset.raw')
	ndatasets = io_numdata(infile)
	DO i=1,ndatasets BEGIN
	  .....lots of code....
c increments to next dataset
	  CALL io_readinfo(infile,numbertype,rank,dims) 
	  .....more code....
        ENDDO
      </pre>

      <hr>
      <a name="Seeking"><h2>Random Access to Datasets
	  <i>(Seeking)</i></h2></a>
      You can select specific datasets in a file using the seek()
      method.<p>
	<b>F77 Call Format</b>
	<code>INTEGER io_seek(INTEGER*8 filehandle,INTEGER index)</code>
      <DL>
	<DT><i>filehandle</i>:
	<DD>Handle to a file open for reading.
	<DT><i>index</i>:
	<DD>The index of the dataset you want to read from.  This can
	  be any number from 0 to (number_of_datasets - 1).
      </DL>
      
      <hr>
      <a name="WriteAttribs"><h2>Writing Attributes</h2></a>
      Attributes allow you to attach extra information to each
      dataset stored in the file.  Each attribute has a name and an
      array of data (of any of the standard IO datatypes) stored with
      it.  These attributes can be retrieved by name or by integer
      index in the order in which they were stored.  A typical
      attribute would typically be parameters that describe the grid
      or the data like, 'origin' which would be the 3-vector of floats
      which locates of the origin of a grid in 3-space.  The method
      used to write these attributes is <b>io_writeAttribute()</b>.<p>
	<b>F77 Call Format</b><br>
	<code>
	  INTEGER io_writeatt(INTEGER*8 filehandle,CHARACTER name(*),INTEGER numbertype,INTEGER
	  length,(some type) data(*))
	</code><p>
      <DL>
	<DT><i>filehandle</i>
	<DD>An open filehandle for the datafile.
	<DT><i>name</i>:
	<DD>Name of the attribute (like 'origin' or 'coordinates')
	<DT><i>numbertype</i>:
	<DD>The type of the data array associated with the attribute
	<i>(<a href="DataTypes.html">datatype definition</a>)</i>
	<DT><i>length</i>:
	<DD>The number of elements in the data array.
	<DT><i>data</i>:
	<DD>The attribute data.
      </DL><p>
	So to write an attribute named <i>origin</i> along with a
	3-vector float for the coordinates of the origin, you would use;
      <pre>
	REAL*4 origin(3)
	origin(1)=5.
	origin(2)=0.3
	origin(3)=0.5
c and assuming the file is already open for writing
c the following attribute will be attached to the last 
c written dataset. (you must have write data before adding attribs)
	io_writeatt(writer,'origin',FLOAT32,3,origin)
      </pre>

      <hr>
      <a name="ReadAttribs"><h2>Reading Attributes</h2></a>
      The attributes can be retrieved in the order they were written
      or they can be retrieved by their name.  To retrieve the
      attributes in order, you would utilize the <b>io_numatt()</b>
      method to determine how many attributes are attached,
      <b>io_iattinfo()</b> to get the size and type of the
      attribute based on its index (<i>use io_attinfo() to get size
	and type for the attribute based on its name</i>), 
    and <b>io_readatt()</b> to read the attribute
      data.<p>
	<b>F77 Call Format</b><br>
	<code>INTEGER io_numatt(INTEGER*8 filehandle)</code><p>
      <DL>
	<DT><i>filehandle</i>
	<DD>An open filehandle for the datafile.
	<DT><i>returnvalue</i>:
	<DD>Number of attributes in the file
      </DL><p>
	<b>F77 Call Format</b><br>
	<code>INTEGER io_iattinfo(INTEGER index,CHARACTER name(*),INTEGER
	  numbertype,INTEGER length,INTEGER maxnamelength)
	</code>
      <DL>
	<DT><i>index</i>:
	<DD>The index of the attribute which can be 0 to (nattributes-1)
	<DT><i>name</i>:
	<DD>A buffer in which the name of the attribute will be placed.
	<DT><i>numbertype</i>:
	<DD>The type of the attribute data
	<i>(<a href="DataTypes.html">datatype definition</a>)</i>
	<DT><i>length</i>:
	<DD>The number of elements in the attribute data.
	<DT><i>maxnamelength</i>:<DD>The maximum size of a name that can be
	  stored in the <b>name</b> buffer.  It can be any positive integer.
      </DL>
      <p>
	<b>F77 Call Format</b><br>
	<code>INTEGER io_readatt(INTEGER*8 filehandle,INTEGER index,(sometype) data(*))</code>
      <DL>
	<DT><i>filehandle</i>
	<DD>An open filehandle for the datafile.
	<DT><i>index</i>:
	<DD>The index of the attribute data to read
	<DT><i>data</i>:
	<DD>The array into which the attribute data is copied.
      </DL>
      So for example, to read the attributes in order, you can use
      <pre>
    INTEGER io_numatt
    CHARACTER*128 name
    INTEGER length,datatype
    nattributes=io_numatt(infile)
	DO i=0,nattributes
	    ...
	    CALL io_iattinfo(infile,i,name,&datatype,&length)
	    ... allocate some data for storage or put in preallocated data
	    CALL io_readatt(infile,i,data)
	ENDDO
      </pre><p>

	The attributes can also be retrieve by name.  In fact, the is
	the most likely way you will use the attibutes interface.  The
	<b>io_attinfo()</b> method is overloaded to allow retrieval by
	name as
	well.  It returns the index of the attribute if one is found with a
	matching name: it returns -1 if one is not found.
      <p><b>F77 Call Format</b><br>
	<code>
	  INTEGER io_attinfo(CHARACTER name(*),INTEGER numbertype,INTEGER
	  length)
	</code>
      <DL>
	<DT><i>filehandle</i>
	<DD>An open filehandle for the datafile.
	<DT><i>returnvalue</i>:
	<DD>The index of the attribute if found or -1 if no attribute with
	  matching name is found.
	<DT><i>name</i>:
	<DD>The name of the attribute to find.
	<DT><i>numbertype</i>:
	<DD>Returns the numbertype of the stored attribute data
	<i>(<a href="DataTypes.html">datatype definition</a>)</i>
	<DT><i>length</i>:
	<DD>The length of the stored attribute data.
      </DL>
      So a typical use of this interface would be to find an attribute
      named 'origin' and retrieve its data if it exists.
      <pre>
	INTEGER io_attinfo
	index = io_attinfo(infile,'origin',datatype,length)
	IF (index.LE.0) THEN 
c the attribute exists
		CALL io_readatt(infile,index,data)
	ELSE
		write (*) 'The attribute origin could not be found'
	ENDIF
      </pre>

    </pre>

      <hr>
      <a name="WriteAnn"><h2>Writing Annotations</h2></a>
      An annotation is a text string which can be used to
      describe a dataset.  To write an annotation, you use the
      writeAnnotation() method.<p>
	<b>F77 Call Format</b><br>
	<code>
	  INTEGER io_writenote(INTEGER*8 filehandle,CHARACTER annotationtext(*),INTEGER length)
	</code>
      <DL>
	<DT><i>filehandle</i>
	<DD>An open filehandle for the datafile.
	<DT><i>annotationtext</i>:
	<DD>A character array of the annotation text
	<DT><i>annotationlength</i>
	<DD>The length of the character array
      </DL>
      The annotation will be attached to the last written dataset.
      You can store more than one annotation per dataset and the
      annotations can be of arbitrary length.<p>

      <hr>
      <a name="ReadAnn"><h2>Reading Annotations</h2></a>
      The annotations are stored in the order they are written.  The
      method <b>io_numnote()</b> is used to find out how many
      attributes are attached to a dataset.  The method
      <b>io_readnoteinfo()</b> is used to find the length of the
      annotation and <b>io_readnote()</b> reads the actual
      annotation text.<p>
	<b>F77 Call Format</b><br>
	<code>
	  INTEGER io_numnote(INTEGER*8 filehandle)
	</code>
      <DL>
	<DT><i>filehandle</i>
	<DD>An open filehandle for the datafile.
	<DT><i>returnvalue</i>:
	<DD>Number of annotations attached to current dataset.
      </DL><p>
	<b>F77 Call Format</b><br><code>
	  io_readnoteinfo(INTEGER*8 filehandle,INTEGER index,INTEGER length)
	</code>
      <DL>
	<DT><i>filehandle</i>
	<DD>An open filehandle for the datafile.
	<DT><i>index</i>:
	<DD>Index of the annotations which can be 0 to (nannotations-1)
	<DT><i>length</i>:
	<DD>Length in characters of the annotation.  This includes the
	  null-terminating character.
      </DL>
      
      <hr>
      <a name="ReadWriteChunk"><h2>Writing and Reading in Chunks</h2></a>
      For distributed-memory programming paradigms like HPF, MPI, or
      PVM, it is often not unfeasible to write data to disk in a
      single operation.  For this reason, a <i>chunking</i> interface
      is provided which allows you to write data in blocks to the
      disk.<p>
	To begin a chunk writing operation, you must first reserve a
	data chunk in the file.  This is accomplished using <b>io_reservck()</b>
	<b>F77 Call Format</b><br>
	<code>
	  INTEGER io_reservck(INTEGER*8 filehandle,INTEGER datatype,INTEGER rank,INTEGER dims(*))
	</code><p>
	Once space has been allocated in the datafile, you can write
	blocks of data specified by their dimensions and origin using
	<b>io_writeck()</b>
	<b>F77 Call Format</b><br>
	<code>
	  INTEGER io_writeck(INTEGER*8 filehandle,INTEGER dims(*),INTEGER origin(*),(sometype) data(*...))
	</code><p>
	Likewise, it is possible to read chunks from the disk as
	well.  No special procedure is required to select a record to
	read in chunks. Simply use <a href="#Reading">io_readinfo()</a> 
	to get the dimensions and
	type of the dataset and then use <b>io_readck()</b> in place
	of <b>io_read()</b> in order to read-in the data.
	<b>F77 Call Format</b><br>
	<code>
	  INTEGER io_readck(INTEGER*8 filehandle,INTEGER dims(*),INTEGER origin(*),(sometype) data(*...))
	</code><p>
      <hr>
      <address><a href="mailto:jshalf@suttung.aei-potsdam.mpg.de">John
	  Shalf</a></address>
      <!-- Created: Mon Apr  7 12:52:52 MDT 1997 -->
      <!-- hhmts start -->
Last modified: Thu Feb  4 22:02:39 CST 1999
<!-- hhmts end -->
  </body>
</html>