aboutsummaryrefslogtreecommitdiff
path: root/doc/html/UsingC++.html
blob: 15622d0839a70c6f523eb6e8ba632e8b8465ee7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
<html>
  <head>
    <title>IEEE IO C++ Interface</title>
  </head>
  <body bgcolor="#F0F0F0">
    <table><tr>
	  <td><img src="Images/info.gif"></td>
	  <td><h1>C++</h1></td>
	  </tr></table>
	<hr>
	<h1>Using the C++ Interface</h1>
      To use the C++ interface, you must include the
      headers <b>IO.hh</b> and <b>IEEEIO.hh</b>.  If you only require
      the IEEEIO interface, you link only with <b>libieeeio.a</b> using
      <code>-L$IEEE_DIRECTORY/lib -lieeeio</code>.<p>
	
	If you
	also want HDF support you must also include the header
	<b>HDFIO.hh</b> and link with <b>libhdfio.a</b> and
	the usual complement of HDF libraries using
	<code>-L$HDF_DIRECTORY/lib -L$IEEE_DIRECTORY/lib -lhdfio
	  -lieeeio -lmfhdf -ldf -ljpeg -lz</code>.
	<hr>
	<h1>C++ Methods</h1>
	<UL>
	  <LI><a href="#Opening">Opening and Closing Datafiles</a>
	  <LI><a href="#Writing">Writing Datasets</a>
	  <LI><a href="#Reading">Reading Datasets</a>
	  <LI><a href="#Seeking">Random Access to Datasets <i>(Seeking)</i></a>
	  <LI><a href="#WriteAttribs">Writing Attributes</a>
	  <LI><a href="#ReadAttribs">Reading Attributes</a>
	  <LI><a href="#WriteAnn">Writing Annotations</a>
	  <LI><a href="#ReadAnn">Reading Annotations</a>
	  <LI><a href="#ReadWriteChunk">Writing and Reading in Chunks</a>
	</UL>

	<hr>
	<a name="Opening"><h2>Opening</h2></a>
	To open an IEEEIO file, you simply create a new IEEEIO object.
       The constructor handles the opening.<p>
      <b>C++ Prototype</b><br>
      <code>IEEEIO::IEEEIO(char *filename,IObase::AccessMode accessmode);</code><br>
      <DL>
	<DT><i>filename</i>:
	  <DD>The name of the IEEEIO data file to
	  open.  The typical extension for these files is <i>.raw</i>
	<DT><i>accessmode</i>:
	  <DD>The accessmode for the file.  This is
	  one of 3 different access modes
	  <!--<DL>
	    <DT><i>IObase::Read</i>:
	    <DD>Opens a file in read-only mode.
	    <DT><i>IObase::Create</i>:
	    <DD>Opens a file in write-only mode.  If the file does not exist, it will be created.  If it does exist, it will be truncated.
	    <DT><i>IObase::Append</i>: 
	      <DD>Opens a file in read/write mode.  The file pointer is automatically placed at the end of the file for appending, but random-access read operations are allowed as well.
	  </DL>-->
	  <UL>
	    <LI><b>IObase::Read</b>:
	      Opens a file in read-only mode.
	    <LI><b>IObase::Create</b>:
	    Opens a file in write-only mode.  If the file does not exist, it will be created.  If it does exist, it will be truncated.
	    <LI><b>IObase::Append</b>: 
	      Opens a file in read/write mode.  The file pointer is automatically placed at the end of the file for appending, but random-access read operations are allowed as well.
	  </UL>
      </DL>
      
      Since this is inherited from the IO base class, you can assign
      the newly created object to a pointer to the base class and
      deal with it generically.<br>
<pre>
    IO *writer = new IEEEIO("datafileout.raw",IObase::Create);
    IO *reader = new IEEEIO("datafilein.raw",IObase::Read);
</pre><br>
      You can test if the file was opened successfully using the IObase::isValid() method.<br>
<pre>
    if(!reader->isValid())
       puts("The file you specified does not exist or is not in a readable format");
</pre><br>
      
      Other IO systems can be inherited from the IO base class.  So
    for instance, to read HDF files you simply link with the the HDFIO
    and HDF libraries and open using;
      <pre>
    IO *writer = new HDFIO("datafileout.raw",IObase::Create);
    IO *reader = new HDFIO("datafilein.raw",IObase::Read);
      </pre>

    After the files are opened, you can use the methods in the
    baseclass IO to do all of your reading and writing in a completely
    generic manner regardless of the implementation of the underlying
    IO system so long as the underlying IO system implements the
    methods of the base class.  There are plans, for example, to have
    a SocketIO system that allows the data to be written out to a TCP
    socket instead of to a file for real-time simulation-visualization
    systems.  There are also plans to use this interface to drive an
    existing Parallel IO system.<p>

To close the file, you simply delete the object.
<pre>
   delete writer;
   delete reader;
</pre>
	Since virtual destructors are used, you can delete them as
    objects of the base IO class (no casts required).  

      <hr>
      <a name="Writing"><h2>Writing</h2></a>
      To write data you simply use the method write().
      <p><b>C++ Prototype</b><br>
      <code>IEEEIO::write(IObase::DataType numbertype,int rank,int *dimensions,void *data);</code>
      <DL>
	  <DT><i>numbertype</i>:
	  <DD>The type of the data being stored 
	(as defined in <a href="DataTypes.html">DataType.html</a>).  
	It can be one of
	  <UL>
	    <LI><b>IObase::Float32</b><br><i>32-bit single-precision IEEE float</i>
	    <LI><b>IObase::Float64</b><br><i>64-bit double-precision IEEE float</i>
	    <LI><b>IObase::Int8</b><br><i>byte</i>
	    <LI><b>IObase::Int16</b><br><i>16-bit short integer</i>
	    <LI><b>IObase::Int32</b><br><i>32-bit standard integer</i>
	    <LI><b>IObase::Int64</b><br><i>64-bit long integer. (note:
		this is not availible on the Intel/Windows
		platform)</i>
	    <LI><b>IObase::uInt8</b><br><i>unsigned character</i>
	    <LI><b>IObase::uInt16</b><br><i>unsigned 16-bit short integer</i>
	    <LI><b>IObase::uInt32</b><br><i>unsigned 32-bit standard integer</i>
	    <LI><b>IObase::uInt64</b><br><i>unsigned 64-bit long integer. (note: this is not availible on the Intel/Windows platform)</i>
	  </UL>
	<DT><i>rank</i>
	  <DD>Number of dimensions of the dataset
	  <DT><i>dimensions</i>:
	  <DD>An array of <i>rank</i> integers that give the dimensions of the dataset
	<DT><i>data</i>:
	  <DD>Your data array. 
	</DL>

	  So to write a sample array of data.
	<pre>
	float myarray[40][50][60]; // our bogus data array
	int rank=3;
	int dims[3]={60,50,40}; // notice these are reversed.
		// this is because ieeeio assumes f77 order for data 
		// and c/c++ use exactly the opposite ordering for data in memory.
	IO *writer=new IEEEIO("datafile.raw",IObase::Create); // create a outfile
	writer->write(IObase::Float32,rank,dims,myarray); // write a dataset
	. . . . you can write as many datasets as you want
	delete writer; // then close the file
	</pre>

	<hr>
	<a name="Reading"><h2>Reading Data</h2></a>
	Reading is a two step process.  First you get information on
      the size and type of the data you intend to read.  This allows
      you to allocate an array of the proper size and type for the
      reading.  Then you actually read the data into a pre-allocated
      array.  The methods for this are readInfo() and read().<p>
	<b>C++ Prototype</b><br>
	<code>readInfo(IObase::DataType &numbertype,int &rank,int
	  *dims,int maxdims=3);</code><p>
      <DL>
	<DT><i>numbertype</i>:
	<DD>The type of the data being stored 
	<i>(<a href="DataTypes.html">datatype definition</a>)</i>.  
	It can be one of
	  <UL>
	    <LI><b>IObase::Float32</b><br><i>32-bit single-precision IEEE float</i>
	    <LI><b>IObase::Float64</b><br><i>64-bit double-precision IEEE float</i>
	    <LI><b>IObase::Int8</b><br><i>byte</i>
	    <LI><b>IObase::Int16</b><br><i>16-bit short integer</i>
	    <LI><b>IObase::Int32</b><br><i>32-bit standard integer</i>
	    <LI><b>IObase::Int64</b><br><i>64-bit long integer. (note:
		this is not availible on the Intel/Windows
		platform)</i>
	    <LI><b>IObase::uInt8</b><br><i>unsigned character</i>
	    <LI><b>IObase::uInt16</b><br><i>unsigned 16-bit short integer</i>
	    <LI><b>IObase::uInt32</b><br><i>unsigned 32-bit standard integer</i>
	    <LI><b>IObase::uInt64</b><br><i>unsigned 64-bit long integer. (note: this is not availible on the Intel/Windows platform)</i>
	  </UL>
	<DT><i>rank</i>
	<DD>Number of dimensions of the dataset
	<DT><i>dimensions</i>:
	<DD>An array of <i>rank</i> integers that give the dimensions
	  of the dataset
	<DT><i>maxdims</i>:
	<DD>The maximum size of the dimensions array you given it.
	  This prevents array overruns if the dataset has more
	  dimensions than you were anticipating.  The default is 3 but
	  it can be any arbitrary positive integer.
      </DL>
      This retrieves information about the datatype, rank, 
      and dimensions of the dataset to be retrieved.
      By default the maximum size of the dimensions array is 3, 
      but you can set it to be larger.<p>
	<b>C++ Prototype</b><br>
	<code>
	IEEEIO::read(void *data);
	</code><p>
	This actually reads the dataset into the preallocated array <i>data</i>.<p>

	  Another useful utility function is IObase::sizeOf() which returns the number of bytes in a give IObase:: datatype in manner analogous to the standard C sizeof() operator.

	  So for instance, to read a simple dataset, you would do
	<pre>
	int rank;
	IObase::DataType numbertype;
	int dims[3];
	float *data; // assumes float data
	IO *infile = new IEEEIO("dataset.raw",IObase::Read);
	infile-&gtreadInfo(numbertype,rank,dims);
	// OK, we are assuming a 3D IObase::Float32 array, 
	// but you can be more sophisticated...
	data = new char[IObase::nBytes(numbertype,rank,dims)];
        // You can also use
        // data = new float[IObase::nElements(rank,dims)];
	infile-&gtread(data); // read in the data
	</pre><p>

	  Since multiple datasets can be stored in a file, you can
	retrieve them in the order they were written <i>(there is a <a
href="#Seeking">seek()</a> function that allows random access as well)</i>.  The method <b>readInfo()</b> implies reading the next dataset stored in the file.  The method <b>nDatasets()</b> tells how many datasets are in a file. So typically if you want to read all datasets in a file in order, you would use code similar to;
	<pre>
	IO *infile = new IEEEIO("dataset.raw",IObase::Read);
	for(int i=0;i&ltinfile-&gtnDatasets();i++){
	  .....lots of code....
	  infile->readInfo(numbertype,rank,dims); // increments to next dataset
	  .....more code....
	}
	</pre>

      <hr>
      <a name="Seeking"><h2>Random Access to Datasets
	  <i>(Seeking)</i></h2></a>
      You can select specific datasets in a file using the seek()
      method.<p>
	<b>C++ Prototype</b>
	<code>IEEEIO::seek(int index)</code>
	<DL>
	<DT><b>index</b>
	<DD>The index of the dataset you want to read from.  This can
	  be any number from 0 to (number_of_datasets - 1).
      </DL>
      
      <hr>
      <a name="WriteAttribs"><h2>Writing Attributes</h2></a>
	  Attributes allow you to attach extra information to each
      dataset stored in the file.  Each attribute has a name and an
      array of data (of any of the standard IObase:: types) stored with
      it.  These attributes can be retrieved by name or by integer
      index in the order in which they were stored.  A typical
      attribute would typically be parameters that describe the grid
      or the data like, "origin" which would be the 3-vector of floats
      which locates of the origin of a grid in 3-space.  The method
      used to write these attributes is writeAttribute();<p>
	<b>C++ Prototype</b><br>
      <code>
	IEEEIO::writeAttribute(char *name,IObase::DataType numbertype,int length,void *data)
      </code><p>
      <DL>
	<DT><i>name</i>:
	<DD>Name of the attribute (like "origin" or "coordinates")
	<DT><i>numbertype</i>:
	<DD>The type of the data array associated with the attribute 
	<i>(<a href="DataTypes.html">datatype definition</a>)</i>
	<DT><i>length</i>:
	<DD>The number of elements in the data array.
	<DT><i>data</i>:
	<DD>The attribute data.
      </DL><p>
	    So to write an attribute named <i>origin</i> along with a 3-vector float for the coordinates of the origin, you would use;
	  <pre>
	float origin[3]={5.1,0.3,0.5};
	// and assuming the file is already open for writing
	// the following attribute will be attached to the last 
	// written dataset. (you must have write data before adding attribs)
	writer->writeAttribute("origin",IObase::Float32,3,origin);
	  </pre>

      <hr>
      <a name="ReadAttribs"><h2>Reading Attributes</h2></a>
      The attributes can be retrieved in the order they were written
      or they can be retrieved by their name.  To retrieve the
      attributes in order, you would utilize the <b>nAttributes()</b>
      method to determine how many attributes are attached,
      <b>readAttributeInfo()</b> to get the size and type of the
      attribute, and <b>readAttribute()</b> to read the attribute
      data.<p>
	<b>C++ Prototype</b><br>
	<code>int IEEEIO::nAttributes()</code><p>
      <DL>
	<DT><i>returnvalue</i>:
	<DD>Number of attributes in the file
      </DL><p>
	<b>C++ Prototype</b><br>
	<code>IEEEIO::readAttributeInfo(int index,char *name,IObase::DataType &numbertype,int &length,int maxnamelength=128);
	</code>
      <DL>
	<DT><i>index</i>:
	<DD>The index of the attribute which can be 0 to (nattributes-1)
	<DT><i>name</i>:
	<DD>A buffer in which the name of the attribute will be placed.
	<DT><i>numbertype</i>:
	<DD>The type of the attribute data 
	<i>(<a href="DataTypes.html">datatype definition</a>)</i>
	<DT><i>length</i>:
	<DD>The number of elements in the attribute data.
	<DT><i>maxnamelength</i>:<DD>The maximum size of a name that can be stored in the <b>name</b> buffer.  The default maximum is 128, but can be set to any size.
      </DL>
<p>
	<b>C++ Prototype</b><br>
	<code>IEEEIO::readAttribute(int index,void *data);</code>
      <DL>
	<DT><i>index</i>:
	<DD>The index of the attribute data to read
	<DT><i>data</i>:
	<DD>The array into which the attribute data is copied.
      </DL>
      So for example, to read the attributes in order, you can use
      <pre>
	for(int i=0;i&ltinfile-&gtnAttributes();i++){
	    char name[128];
	    int length;
	    IObase::DataType datatype;
	    ...
	    infile->readAttributeInfo(i,name,datatype,length);
	    ... // allocate some data for storage
	    infile->readAttribute(i,data);
	}
	  </pre><p>

	      The attributes can also be retrieve by name.  In fact,
      the is the most likely way you will use the attibutes interface.
      The readAttributeInfo() method is overloaded to allow retrieval
      by name as well.  It returns the index of the attribute if one
      is found with a matching name: it returns -1 if one is not
      found.
	    <p><b>C++ Prototype</b><br>
	<code>
	int IEEEIO::readAttributeInfo(char *name,IObase::DataType &numbertype,int &length);
      </code>
      <DL>
	<DT><i>returnvalue</i>:
	<DD>The index of the attribute if found or -1 if no attribute with matching name is found.
	<DT><i>name</i>:
	<DD>The name of the attribute to find.
	<DT><i>numbertype</i>:
	<DD>Returns the numbertype of the stored attribute data
	<i>(<a href="DataTypes.html">datatype definition</a>)</i>
	<DT><i>length</i>:
	<DD>he length of the stored attribute data.
      </DL>
	    So a typical use of this interface would be to find an attribute named "origin" and retrieve its data if it exists.
	    <pre>
	int index = infile->readAttributeInfo("origin",datatype,length);
	if(index>=0) // the attribute exists
		infile->readAttribute(index,data);
	else 
		puts("The attribute origin could not be found");
	    </pre>

	  </pre>

	    <hr>
	    <a name="WriteAnn"><h2>Writing Annotations</h2></a>
      An annotation is a text string which can be used to
      describe a dataset.  To write an annotation, you use the
      writeAnnotation() method.<p>
	<b>C++ Prototype</b><br>
	<code>
	  IEEEIO::writeAnnotation(char *annotationtext)
	</code>
      <DL>
	<DT><i>annotationtext</i>:
	<DD>A null terminated string of the annotation text
      </DL>
      The annotation will be attached to the last written dataset.
      You can store more than one annotation per dataset and the
      annotations can be of arbitrary length.<p>

      <hr>
      <a name="ReadAnn"><h2>Reading Annotations</h2></a>
      The annotations are stored in the order they are written.  The
      method <b>nAnnotations()</b> is used to find out how many
      attributes are attached to a dataset.  The method
      <b>readAnnotationInfo()</b> is used to find the length of the
      annotation and <b>readAnnotatin()</b> reads the actual
      annotation text.<p>
	<b>C++ Prototype</b><br>
      <code>
	int nAnnotations();
      </code>
      <DL>
	<DT><i>returnvalue</i>:
	  <DD>Number of annotations attached to current dataset.
      </DL><p>
      <b>C++ Prototype</b><br><code>
	readAnnotationInfo(int index,int &length)
      </code>
      <DL>
	<DT><i>index</i>:
	<DD>Index of the annotations which can be 0 to (nannotations-1)
	<DT><i>length</i>:
	<DD>Length in characters of the annotation.  This includes the null-terminating character.
      </DL>
      <hr>
      <a name="ReadWriteChunk"><h2>Writing and Reading in Chunks</h2></a>
      For distributed-memory programming paradigms like HPF, MPI, or
      PVM, it is often not unfeasible to write data to disk in a
      single operation.  For this reason, a <i>chunking</i> interface
      is provided which allows you to write data in blocks to the
      disk.<p>
	To begin a chunk writing operation, you must first reserve a
	data chunk in the file.  This is accomplished using <b>reserveChunk()</b>
	<b>C++ Prototype</b><br>
	<code>IObase::reserveChunk(IObase::DataType datatype,int rank,int *dims);
	</code><p>
		Once space has been allocated in the datafile, you can write
	blocks of data specified by their dimensions and origin using
	<b>writeChunk()</b>
	<b>C++ Prototype</b><br>
	<code>
	  int IObase::IOwriteChunk(int *dims,int *origin,void *data);
	</code><p>
	Likewise, it is possible to read chunks from the disk as
	well.  No special procedure is required to select a record to
	read in chunks. Simply use <a href="#Reading">readInfo()</a> 
	to get the dimensions and
	type of the dataset and then use <b>readChunk()</b> in place
	of <b>read()</b> in order to read-in the data.
	<b>C++ Prototype</b><br>
	<code>
	  int IObase::readChunk(int *dims,int *origin,void *data);
	</code><p>
      <hr>
      <address><a href="mailto:jshalf@suttung.aei-potsdam.mpg.de">John Shalf</a></address>
      <!-- Created: Mon Apr  7 12:52:52 MDT 1997 -->
      <!-- hhmts start -->
Last modified: Thu Feb  4 21:53:13 CST 1999
<!-- hhmts end -->
  </body>
</html>