aboutsummaryrefslogtreecommitdiff
path: root/src/ADMmass_integrand3D.F
blob: b905b172753be5d3a27644f520fcc77e41f6e12c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Functions.h"

c     ========================================================================

      SUBROUTINE ADMmass_integrand3D(origin,Dx,Dy,Dz,x,y,z,gxx,gxy,gxz,
     &     gyy,gyz,gzz,ADMmass_int,Psi,Psi_power,conformal_state)

c     ------------------------------------------------------------------------
c
c     Estimates the ADM mass at a given radius using Equation (7) from
c     O Murchadha and York, Phys Rev D, 10, 1974 page 2345
c
c     ------------------------------------------------------------------------
      
      IMPLICIT NONE

c     Input variables
      INTEGER,INTENT(IN) ::
     &     Psi_power,conformal_state
      CCTK_REAL,INTENT(IN) :: 
     &     Dx,Dy,Dz,origin(3)
      CCTK_REAL,DIMENSION(:),INTENT(IN) :: 
     &     x,y,z
      CCTK_REAL,DIMENSION(:,:,:),INTENT(IN) :: 
     &     gxx,gxy,gxz,gyy,gyz,gzz,Psi
      
c     Output variables
      CCTK_REAL,DIMENSION(:,:,:),INTENT(OUT) :: 
     &     ADMmass_int
      
c     Local variables, here only
      INTEGER :: 
     &     i,j,k,ip
      CCTK_REAL,PARAMETER ::
     &     half = 0.5D0
      CCTK_REAL :: 
     &     rad,ux,uy,uz,det,dxx,dxy,dxz,dyy,dyz,dzz,uxx,uxy,uxz,uyy,
     &     uyz,uzz,term1,term2,term3,dxx_y,dxx_z,dxy_x,dxy_y,dxy_z,
     &     dyy_x,dxz_x,dxz_y,dxz_z,dyz_x,dzz_x,dyy_z,dyz_y,dyz_z,dzz_y,
     &     Pi,idet,p,pip,pim,pjp,pjm,pkp,pkm

      DECLARE_CCTK_PARAMETERS
      DECLARE_CCTK_FUNCTIONS

c     ------------------------------------------------------------------------

      Pi = ACOS(-1D0)

c     Because other codes evolve Psi**4
      SELECT CASE (Psi_power)

      CASE (1)
         ip = 4

      CASE (4)
         ip = 1

      CASE DEFAULT
         WRITE(*,*) "This value of Psi_power is not supported"

      END SELECT   
      

      DO k = 2, SIZE(z)-1
         DO j = 2, SIZE(y)-1
            DO i = 2, SIZE(x)-1
               
               rad = SQRT((x(i)-origin(1))**2 
     &              +(y(j)-origin(2))**2
     &              +(z(k)-origin(3))**2)
               
               IF (rad.NE.0) THEN

                  ux = (x(i)-origin(1))/rad
                  uy = (y(j)-origin(2))/rad
                  uz = (z(k)-origin(3))/rad

c                 Abbreviations for metric coefficients
c                 -------------------------------------

                  if (conformal_state > 0) then
  
                    p = psi(i,j,k)**ip

                    dxx = p*gxx(i,j,k); dxy = p*gxy(i,j,k)
                    dxz = p*gxz(i,j,k); dyy = p*gyy(i,j,k)
                    dyz = p*gyz(i,j,k); dzz = p*gzz(i,j,k)

                 else 

                    p = 1.0d0

                    dxx = gxx(i,j,k); dxy = gxy(i,j,k)
                    dxz = gxz(i,j,k); dyy = gyy(i,j,k)
                    dyz = gyz(i,j,k); dzz = gzz(i,j,k)

                 end if

c                 Determinant of 3-metric
c                 -----------------------
                  det = (dxx*dyy*dzz + 2.0D0*dxy*dxz*dyz
     &                 - (dxx*dyz**2 + dyy*dxz**2 + dzz*dxy**2))

                  idet = 1.0/det

c                 Inverse 3-metric
c                 ----------------
                  uxx = idet*(dyy*dzz - dyz**2)
                  uyy = idet*(dxx*dzz - dxz**2)
                  uzz = idet*(dxx*dyy - dxy**2)
                  uxy = idet*(dxz*dyz - dzz*dxy)
                  uxz = idet*(dxy*dyz - dyy*dxz)
                  uyz = idet*(dxy*dxz - dxx*dyz)

c                 Derivatives of the 3-metric
c                 ---------------------------

                  IF (conformal_state > 0) THEN

                    pip = psi(i+1,j,k)**ip
                    pim = psi(i-1,j,k)**ip
                    pjp = psi(i,j+1,k)**ip
                    pjm = psi(i,j-1,k)**ip
                    pkp = psi(i,j,k+1)**ip
                    pkm = psi(i,j,k-1)**ip

                 else

                    pip = 1.0d0
                    pim = 1.0d0
                    pjp = 1.0d0
                    pjm = 1.0d0
                    pkp = 1.0d0
                    pkm = 1.0d0

                 end if

                  dxx_y = half/Dy*(pjp*gxx(i,j+1,k)-pjm*gxx(i,j-1,k))
                  dxx_z = half/Dz*(pkp*gxx(i,j,k+1)-pkm*gxx(i,j,k-1))
                  dxy_x = half/Dx*(pip*gxy(i+1,j,k)-pim*gxy(i-1,j,k))
                  dxy_y = half/Dy*(pjp*gxy(i,j+1,k)-pjm*gxy(i,j-1,k))
                  dxy_z = half/Dz*(pkp*gxy(i,j,k+1)-pkm*gxy(i,j,k-1))
                  dyy_x = half/Dx*(pip*gyy(i+1,j,k)-pim*gyy(i-1,j,k))
                  dyy_z = half/Dz*(pkp*gyy(i,j,k+1)-pkm*gyy(i,j,k-1))
                  dxz_x = half/Dx*(pip*gxz(i+1,j,k)-pim*gxz(i-1,j,k))
                  dxz_y = half/Dy*(pjp*gxz(i,j+1,k)-pjm*gxz(i,j-1,k))
                  dxz_z = half/Dz*(pkp*gxz(i,j,k+1)-pkm*gxz(i,j,k-1))
                  dyz_x = half/Dx*(pip*gyz(i+1,j,k)-pim*gyz(i-1,j,k))
                  dyz_y = half/Dy*(pjp*gyz(i,j+1,k)-pjm*gyz(i,j-1,k))
                  dyz_z = half/Dz*(pkp*gyz(i,j,k+1)-pkm*gyz(i,j,k-1))
                  dzz_x = half/Dx*(pip*gzz(i+1,j,k)-pim*gzz(i-1,j,k))
                  dzz_y = half/Dy*(pjp*gzz(i,j+1,k)-pjm*gzz(i,j-1,k))

                  term1 = uxy*(dxx_y-dxy_x)+uxz*(dxx_z-dxz_x)
     &                 +uyy*(dxy_y-dyy_x)+uyz*(dxy_z-dyz_x)
     &                 +uyz*(dxz_y-dyz_x)+uzz*(dxz_z-dzz_x)

                  term2 = uyz*(dyy_z-dyz_y)+uxy*(dyy_x-dxy_y)
     &                 +uzz*(dyz_z-dzz_y)+uxz*(dyz_x-dxz_y)
     &                 +uxz*(dxy_z-dxz_y)+uxx*(dxy_x-dxx_y)

                  term3 = uxz*(dzz_x-dxz_z)+uyz*(dzz_y-dyz_z)
     &                 +uxx*(dxz_x-dxx_z)+uxy*(dxz_y-dxy_z)
     &                 +uxy*(dyz_x-dxy_z)+uyy*(dyz_y-dyy_z)

                  ADMmass_int(i,j,k) = 1.0D0/16.0D0/Pi*(ux*term1+
     &                 uy*term2+uz*term3)*SQRT(det)*rad**2

               ELSE
                  
                  ADMmass_int(i,j,k) = 0.0D0
                  
               ENDIF

          ENDDO
        ENDDO
      ENDDO


c     This is needed when the grid is an octant, but it does not hurt
c     if it is not

      DO k = 2, size(z)-1
         DO j = 2, size(y)-1
            ADMmass_int(1,j,k) = ADMmass_int(2,j,k)
         ENDDO
      ENDDO
      DO k = 2, size(z)-1
         DO i = 1, size(x)-1
            ADMmass_int(i,1,k) = ADMmass_int(i,2,k)
         ENDDO
      ENDDO
      DO j = 1, size(y)-1
         DO i = 1, size(x)-1
            ADMmass_int(i,j,1) = ADMmass_int(i,j,2)
         ENDDO
      ENDDO


      END SUBROUTINE ADMmass_integrand3D