aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: 61a932c0cffcc65287732b76a479b5373a356590 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
% *======================================================================*
%  Cactus Thorn template for ThornGuide documentation
%  Author: Ian Kelley
%  Date: Sun Jun 02, 2002
%  $Header$                                                             
%
%  Thorn documentation in the latex file doc/documentation.tex 
%  will be included in ThornGuides built with the Cactus make system.
%  The scripts employed by the make system automatically include 
%  pages about variables, parameters and scheduling parsed from the 
%  relevent thorn CCL files.
%  
%  This template contains guidelines which help to assure that your     
%  documentation will be correctly added to ThornGuides. More 
%  information is available in the Cactus UsersGuide.
%                                                    
%  Guidelines:
%   - Do not change anything before the line
%       % BEGIN CACTUS THORNGUIDE",
%     except for filling in the title, author, date etc. fields.
%   - You can define your own macros are OK, but they must appear after
%     the BEGIN CACTUS THORNGUIDE line, and do not redefine standard 
%     latex commands.
%   - To avoid name clashes with other thorns, 'labels', 'citations', 
%     'references', and 'image' names should conform to the following 
%     convention:          
%       ARRANGEMENT_THORN_LABEL
%     For example, an image wave.eps in the arrangement CactusWave and 
%     thorn WaveToyC should be renamed to CactusWave_WaveToyC_wave.eps
%   - Graphics should only be included using the graphix package. 
%     More specifically, with the "includegraphics" command. Do
%     not specify any graphic file extensions in your .tex file. This 
%     will allow us (later) to create a PDF version of the ThornGuide
%     via pdflatex. |
%   - References should be included with the latex "bibitem" command.  
%   - For the benefit of our Perl scripts, and for future extensions, 
%     please use simple latex.     
%
% *======================================================================* 
% 
% Example of including a graphic image:
%    \begin{figure}[ht]
% 	\begin{center}
%    	   \includegraphics[width=6cm]{MyArrangement_MyThorn_MyFigure}
% 	\end{center}
% 	\caption{Illustration of this and that}
% 	\label{MyArrangement_MyThorn_MyLabel}
%    \end{figure}
%
% Example of using a label:
%   \label{MyArrangement_MyThorn_MyLabel}
%
% Example of a citation:
%    \cite{MyArrangement_MyThorn_Author99}
%
% Example of including a reference
%   \bibitem{MyArrangement_MyThorn_Author99}
%   {J. Author, {\em The Title of the Book, Journal, or periodical}, 1 (1999), 
%   1--16. {\tt http://www.nowhere.com/}}
%
% *======================================================================* 

% If you are using CVS use this line to give version information
% $Header$

\documentclass{article}

% Use the Cactus ThornGuide style file
% (Automatically used from Cactus distribution, if you have a 
%  thorn without the Cactus Flesh download this from the Cactus
%  homepage at www.cactuscode.org)
\usepackage{../../../../doc/ThornGuide/cactus}

\begin{document}

% The author of the documentation
\author{Gabrielle Allen} 

% The title of the document (not necessarily the name of the Thorn)
\title{Extracting Gravitational Waves and Other Quantities from Numerical Spacetimes}

% the date your document was last changed, if your document is in CVS, 
% please us:
%    \date{$ $Date$ $}
\date{}

\maketitle

% Do not delete next line
% START CACTUS THORNGUIDE

% Add all definitions used in this documentation here 
%   \def\mydef etc
\def\a   {\alpha}
\def\b   {\beta}
\def\p   {\phi}
\def\t   {\theta}
\def\Y   {Y_{lm}}
\def\Ys  {Y^*_{lm}}
\def\Yt  {Y_{lm,\theta}}
\def\Ytt {Y_{lm,\theta\theta}}
\def\Ytp {Y_{lm,\theta\phi}}
\def\Yp  {Y_{lm,\phi}}
\def\Ypp {Y_{lm,\phi\phi}}
\def\Yz  {Y_{l0}}
\def\Yzt {Y_{l0,\theta}}
\def\Yztt{Y_{l0,\theta\theta}}
\def\c   {\cos\theta}
\def\s   {\sin\theta}
% Add an abstract for this thorn's documentation
\begin{abstract}

\end{abstract}

% The following sections are suggestive only.
% Remove them or add your own.

\section{Introduction}

Thorn Extract calculates first order gauge invariant waveforms from a
numerical spacetime, under the basic assumption that, at the spheres
of extract the spacetime is approximately Schwarzschild. In addition,
other quantities such as mass, angular momentum and spin can be
determined.

This thorn should not be used blindly, it will always return some
waveform, however it is up to the user to determine whether this is
the appropriate expected first order gauge invariant waveform.

\section{Physical System}

\subsection{Wave Forms}

Assume a spacetime $g_{\alpha\beta}$ which can be written as a Schwarzschild 
background $g_{\alpha\beta}^{Schwarz}$ with perturbations $h_{\alpha\beta}$:
%
\begin{equation}
g_{\alpha\beta} = g^{Schwarz}_{\alpha\beta} + h_{\alpha\beta}
\end{equation}
with
%
\begin{equation}
\{g^{Schwarz}_{\alpha\beta}\}(t,r,\theta,\phi) = 
\left( \begin{array}{cccc}
 -S & 0      & 0   & 0                \\
 0  & S^{-1} & 0   & 0                \\
 0  & 0      & r^2 & 0                \\
 0  & 0      & 0   & r^2 \sin^2\theta
\end{array}\right)
\qquad
S(r)=1-\frac{2M}{r}
\end{equation}
%
The 3-metric perturbations $\gamma_{ij}$ can be decomposed using tensor
harmonics into  $\gamma_{ij}^{lm}(t,r)$ where
$$
  \gamma_{ij}(t,r,\theta,\phi)=\sum_{l=0}^\infty \sum_{m=-l}^l
                       \gamma_{ij}^{lm}(t,r)
$$
%
and
%
$$
  \gamma_{ij}(t,r,\t,\p) = \sum_{k=0}^6 p_k(t,r) {\bf V}_k(\t,\p)
$$
where $\{{\bf V}_k\}$ is some basis for tensors on a 2-sphere
in 3-D Euclidean space.
%
%
%
Working with the Regge-Wheeler basis (see Section~\ref{reggewheeler})
the 3-metric is then expanded in terms of the (six) standard
Regge-Wheeler functions $\{c_1^{\times lm}, c_2^{\times lm},
h_1^{+lm}, H_2^{+lm}, K^{+lm},
G^{+lm}\}$~\cite{regge},~\cite{moncrief74}. Where each of the
functions is either {\it odd} ($\times$) or {\it even} ($+$)
parity. The decomposition is then written
%
\begin{eqnarray}
\gamma_{ij}^{lm} & = & c_1^{\times lm}(\hat{e}_1)_{ij}^{lm}
                   +   c_2^{\times lm}(\hat{e}_2)_{ij}^{lm} 
\nonumber\\
                 & + & h_1^{+lm}(\hat{f}_1)_{ij}^{lm} 
                   +   A^2 H_2^{+lm}(\hat{f}_2)_{ij}^{lm}
                   +   R^2 K^{+lm}(\hat{f}_3)_{ij}^{lm}
                   +   R^2 G^{+lm}(\hat{f}_4)_{ij}^{lm}
\end{eqnarray}
%
which we can write in an expanded form as 
%
\begin{eqnarray}
\gamma_{rr}^{lm} 
  & = & A^2 H_2^{+lm} \Y 
\\
\gamma_{r\t}^{lm} 
  & = & - c_1^{\times lm} \frac{1}{\s} \Yp+h_1^{+lm}\Yt 
\\
\gamma_{r\p}^{lm} 
  & = & c_1^{\times lm} \s \Yt+ h_1^{+lm}\Yp 
\\
\gamma_{\t\t}^{lm} 
  & = & c_2^{\times lm}\frac{1}{\s}(\Ytp-\cot\t \Yp) 
      + R^2 K^{+lm}\Y + R^2 G^{+lm}    \Ytt 
\\
\gamma_{\t\p}^{lm} 
  & = & -c_2^{\times lm}\s \frac{1}{2} 
  \left(
  \Ytt-\cot\t \Yt-\frac{1}{\sin^2\theta}\Y \right)
  + R^2 G^{+lm}(\Ytp-\cot\t \Yp)
\\
\gamma_{\p\p}^{lm}
  & = &  -\s c_2^{\times lm} (\Ytp - \cot\t \Yp)
        +R^2 K^{+lm}\sin^2\t \Y
        +R^2 G^{+lm} (\Ypp+\s\c \Yt)
\end{eqnarray}
%
A similar decomposition allows the four gauge components of the
4-metric to be written in terms of {\it three} even-parity variables
$\{H_0,H_1,h_0\}$ and the {\it one} odd-parity variable $\{c_0\}$
%
\begin{eqnarray}
  g_{tt}^{lm} & = & N^2 H_0^{+lm} \Y 
\\
  g_{tr}^{lm} & = & H_1^{+lm} \Y
\\
  g_{t\t}^{lm} & = & h_0^{+lm} \Yt - c_0^{\times lm}\frac{1}{\s}\Yp
\\
  g_{t\p}^{lm} & = & h_0^{+lm} \Yp + c_0^{\times lm} \s \Yt
\end{eqnarray} 
%        
Also from $g_{tt}=-\alpha^2+\beta_i\beta^i$ we have
%
\begin{equation}
  \alpha^{lm} = -\frac{1}{2}NH_0^{+lm}Y_{lm}
\end{equation}
%
It is useful to also write this with the perturbation split into even and
odd parity parts:
$$
g_{\alpha\beta} = {g}^{background}_{\alpha\beta} +
   \sum_{l,m} g^{lm,odd}_{\alpha\beta}
+\sum_{l,m} g^{lm,even}_{\alpha\beta}
$$
where (dropping some superscripts)
\begin{eqnarray*}
\{g_{\alpha\beta}^{odd}\}
&=&
\left( 
\begin{array}{cccc}
0 & 0 &  - c_0\frac{1}{\s}\Yp
    & c_0 \s \Yt
\\
. & 0 & - c_1\frac{1}{\s} \Yp
  & c_1 \s \Yt
\\
. & . & c_2\frac{1}{\s}(\Ytp-\cot\t \Yp)  
  & c_2\frac{1}{2} \left(\frac{1}{\s}
          \Ypp+\c\Yt-\s\Ytt\right)
\\
.&.&.&c_2 (-\s \Ytp+\c \Yp)
\end{array}
\right)
\\
\{g_{\alpha\beta}^{even}\}
&=&
\left( 
\begin{array}{cccc}
N^2 H_0\Y & H_1\Y       & h_0\Yt          & h_0 \Yp             \\ 
.       & A^2H_2\Y & h_1\Yt          & h_1 \Yp             \\
.       & .           & R^2K\Y+r^2G\Ytt & R^2(\Ytp-\cot\t\Yp) \\
.       & .           & .                & R^2 K\sin^2\t\Y+R^2G(\Ypp+\s\c\Yt)
\end{array}
\right)
\end{eqnarray*}

Now, for such a Schwarzschild background we can define two (and only two)
unconstrained gauge invariant quantities 
  $Q^{\times}_{lm}=Q^{\times}_{lm}(c_1^{\times lm},c_2^{\times lm})$ 
and
  $Q^{+}_{lm}=Q^{+}_{lm}(K^{+ lm},G^{+ lm},H_2^{+lm},h_1^{+lm})$, 
which from
\cite{abrahams96a} are
\begin{eqnarray}
Q^{\times}_{lm} 
  & = & \sqrt{\frac{2(l+2)!}{(l-2)!}}\left[c_1^{\times lm}
        + \frac{1}{2}\left(\partial_r c_2^{\times lm} - \frac{2}{r}
        c_2^{\times lm}\right)\right] \frac{S}{r}
\\
Q^{+}_{lm}
  & = & \frac{1}{\Lambda}\sqrt{\frac{2(l-1)(l+2)}{l(l+1)}}
        (4rS^2 k_2+l(l+1)r k_1) 
\\
  & \equiv &
        \frac{1}{\Lambda}\sqrt{\frac{2(l-1)(l+2)}{l(l+1)}}
        \left(l(l+1)S(r^2\partial_r G^{+lm}-2h_1^{+lm})+
        2rS(H_2^{+lm}-r\partial_r K^{+lm})+\Lambda r K^{+lm}\right)
\end{eqnarray}
where
\begin{eqnarray}
k_1 & = & K^{+lm} + \frac{S}{r}(r^2\partial_r G^{+lm} - 2h^{+lm}_1) \\
k_2 & = & \frac{1}{2S}
          \left[H^{+lm}_2-r\partial_r k_1-\left(1-\frac{M}{rS}\right) 
            k_1 + S^{1/2}\partial_r
          (r^2 S^{1/2} \partial_r G^{+lm}-2S^{1/2}h_1^{+lm})\right]
\\
&\equiv& \frac{1}{2S}\left[H_2-rK_{,r}-\frac{r-3M}{r-2M}K\right]
\end{eqnarray}

\noindent
NOTE: These quantities compare with those in Moncrief \cite{moncrief74} by
\begin{eqnarray*}
\mbox{Moncriefs odd parity Q: }\qquad Q^\times_{lm} &=&
 \sqrt{\frac{2(l+2)!}{(l-2)!}}Q
 \\
\mbox{Moncriefs even parity Q: } \qquad Q^+_{lm} &=&
 \sqrt{\frac{2(l-1)(l+2)}{l(l+1)}}Q
\end{eqnarray*}

Note that these quantities only depend on the purely spatial 
Regge-Wheeler functions, and not the gauge parts. (In the Regge-Wheeler 
and Zerilli gauges, these are just respectively (up to a rescaling)
 the Regge-Wheeler 
and Zerilli functions).
These quantities satisfy the wave equations
\begin{eqnarray*}
  &&(\partial^2_t-\partial^2_{r^*})Q^\times_{lm}+S\left[\frac{l(l+1)}{r^2}-\frac{6M}{r^3}
  \right]Q^{\times}_{lm}  =  0 
  \\
  &&(\partial^2_t-\partial^2_{r^*})Q^+_{lm}+S\left[
    \frac{1}{\Lambda^2}\left(\frac{72M^3}{r^5}-\frac{12M}{r^3}(l-1)(l+2)\left(1-\frac{3M}{r}\right)
    \right)+\frac{l(l-1)(l+1)(l+2)}{r^2\Lambda}\right]Q^+_{lm}=0
\end{eqnarray*}
where
\begin{eqnarray*}
  \Lambda &=& (l-1)(l+2)+6M/r \\
  r^*     &=& r+2M\ln(r/2M-1)
\end{eqnarray*}
 



\section{Numerical Implementation}

The implementation assumes that the numerical solution, on a Cartesian
grid, is approximately Schwarzshild on the spheres of constant
$r=\sqrt(x^2+y^2+z^2)$ where the waveforms are extracted. The general
procedure is then:

\begin{itemize}

  \item Project the required metric components, and radial derivatives
  of metric components, onto spheres of constant coordinate radius
  (these spheres are chosen via parameters).

  \item Transform the metric components and there derivatives on the
  2-spheres from Cartesian coordinates into a spherical coordinate
  system.

  \item Calculate the physical metric on these spheres if a conformal
  factor is being used.

  \item Calculate the transformation from the coordinate radius to an
  areal radius for each sphere.

  \item Calculate the $S$ factor on each sphere. Combined with the
  areal radius This also produces an estimate of the mass.

  \item Calculate the six Regge-Wheeler variables, and required radial
  derivatives, on these spheres by integration of combinations of the
  metric components over each sphere.

  \item Contruct the gauge invariant quantities from these
  Regge-Wheeler variables.

\end{itemize}

\subsection{Project onto Spheres of Constant Radius}

This is performed by interpolating the metric components, and if
needed the conformal factor, onto the spheres. Although 2-spheres are
hardcoded, the source code could easily be changed here to project
onto e.g. 2-ellipsoids.

\subsection{Calculate Radial Transformation}

The areal coordinate $\hat{r}$ of each sphere is calculated by
%
\begin{equation}
  \hat{r}    =  \hat{r}(r) = \left[
            \frac{1}{4\pi}
            \int\sqrt{\gamma_{\t\t}
            \gamma_{\p\p}}d\t d\p \right]^{1/2}
\end{equation}
%
from which
%
\begin{equation}
\frac{d\hat{r}}{d\eta} = \frac{1}{16\pi \hat{r}}
  \int\frac{\gamma_{\t\t,\eta}\gamma_{\p\p}+\gamma_{\t\t}\gamma_{\p\p,\eta}}
  {\sqrt{\gamma_{\t\t}\gamma_{\p\p}}} \ d\t d\p
\end{equation}
%
Note that this is not the only way to combine metric components to get
the areal radius, but this one was used because it gave better values
for extracting close to the event horizon for perturbations of black
holes.

\subsection{Calculate $S$ factor and Mass Estimate}

\begin{equation}
S(\hat{r}) = \left(\frac{\partial\hat{r}}{\partial r}\right)^2 \int \gamma_{rr} \ d\t d\p
\end{equation}

\begin{equation}
M(\hat{r}) = \hat{r}\frac{1-S}{2}
\end{equation}

\subsection{Calculate Regge-Wheeler Variables}

\begin{eqnarray*}
c_1^{\times lm}  &=&  \frac{1}{l(l+1)}
                      \int \frac{\gamma_{\hat{r}\p}Y^*_{lm,\t}
                                -\gamma_{\hat{r}\t} Y^*_{lm,\p} }
                     {\s}d\Omega
\\
c_2^{\times lm} & = & -\frac{2}{l(l+1)(l-1)(l+2)}
                      \int\left\{
           \left(-\frac{1}{\sin^2\t}\gamma_{\t\t}+\frac{1}
           {\sin^4\t}\gamma_{\p\p}\right)
           (\s Y^*_{lm,\t\p}-\c Y^*_{lm,\p})
\right.
\\
&&\left.
           + \frac{1}{\s} \gamma_{\t\p}
           (Y^*_{lm,\t\t}-\cot\t Y^*_{lm,\t}
           -\frac{1}{\sin^2\t}Y^*_{lm,\p\p}) \right\}d\Omega
\\
h_1^{+lm} &=& \frac{1}{l(l+1)}
            \int \left\{
                \gamma_{\hat{r}\t} Y^*_{lm,\t} + \frac{1}{\sin^2\t}
                \gamma_{\hat{r}\p}Y^*_{lm,\p}\right\} d\Omega
\\
H_2^{+lm} &=& S  \int \gamma_{\hat{r}\hat{r}} \Ys d\Omega
\\
K^{+lm}   &=& \frac{1}{2\hat{r}^2} \int \left(\gamma_{\t\t}+
           \frac{1}{\sin^2\t}\gamma_{\p\p}\right)\Ys
           d\Omega
\\
          &&+\frac{1}{2\hat{r}^2(l-1)(l+2)}
\int \left\{
  \left(\gamma_{\t\t}-\frac{\gamma_{\p\p}}{\sin^2\t}\right)
    \left(Y^*_{lm,\t\t}-\cot\t Y^*_{lm,\t}-\frac{1}{\sin^2\t}
    Y^*_{lm,\p\p}\right) 
\right.
\\
&&\left.
   + \frac{4}{\sin^2\t}\gamma_{\t\p}(Y^*_{lm,\t\p}-\cot\t
     Y^*_{lm,\p})
     \right \} d\Omega
\\
G^{+lm}  &=& \frac{1}{\hat{r}^2 l(l+1)(l-1)(l+2)}
  \int \left\{
  \left(\gamma_{\t\t}-\frac{\gamma_{\p\p}}{\sin^2\t}\right)
    \left(Y^*_{lm,\t\t}-\cot\t Y^*_{lm,\t}-\frac{1}{\sin^2\t}
    Y^*_{lm,\p\p}\right) 
\right.
\\
&&\left.
   +\frac{4}{\sin^2\t}\gamma_{\t\p}(Y^*_{lm,\t\p}-\cot\t
   Y^*_{lm,\p})
   \right\}d\Omega
\end{eqnarray*}
where
\begin{eqnarray}
\gamma_{\hat{r}\hat{r}}      & = & \frac{\partial r}{\partial \hat{r}}
                       \frac{\partial r}{\partial \hat{r}}
                       \gamma_{rr} 
\\
\gamma_{\hat{r}\t} & = & \frac{\partial r}{\partial \hat{r}}
                       \gamma_{r\t} 
\\
\gamma_{\hat{r}\p}   & = & \frac{\partial r}{\partial \hat{r}}
                       \gamma_{r\p}
\end{eqnarray}

\subsection{Calculate Gauge Invariant Quantities}

\begin{eqnarray}
Q^{\times}_{lm} 
  & = & \sqrt{\frac{2(l+2)!}{(l-2)!}}\left[c_1^{\times lm}
        + \frac{1}{2}\left(\partial_{\hat{r}} c_2^{\times lm} - \frac{2}{\hat{r}}
        c_2^{\times lm}\right)\right] \frac{S}{\hat{r}}
\\
Q^{+}_{lm}
  & = & \frac{1}{(l-1)(l+2)+6M/\hat{r}}\sqrt{\frac{2(l-1)(l+2)}{l(l+1)}}
        (4\hat{r}S^2 k_2+l(l+1)\hat{r} k_1) 
\end{eqnarray}
where
\begin{eqnarray}
k_1 & = & K^{+lm} + \frac{S}{\hat{r}}(\hat{r}^2\partial_{\hat{r}} G^{+lm} - 2h^{+lm}_1) \\
k_2 & = & \frac{1}{2S}
          [H^{+lm}_2-\hat{r}\partial_{\hat{r}} k_1-(1-\frac{M}{\hat{r}S}) k_1 + S^{1/2}\partial_{\hat{r}}
          (\hat{r}^2 S^{1/2} \partial_{\hat{r}} G^{+lm}-2S^{1/2}h_1^{+lm}
\end{eqnarray}

\section{Using This Thorn}

Use this thorn very carefully. Check the validity of the waveforms by running
tests with different resolutions, different outer boundary conditions, etc
to check that the waveforms are consistent.

\subsection{Basic Usage}

\subsection{Output Files}

Although Extract is really an {\tt ANALYSIS} thorn, at the moment it
is scheduled at {\tt POSTSTEP}, with the iterations at which output is
performed determined by the parameter {\it itout}. Output files from
{\tt Extract} are always placed in the main output directory defined
by {\tt CactusBase/IOUtil}.

Output files are generated for each detector (2-sphere) used, and
these detectors are identified in the name of each output file by {\tt
R1}, {\tt R2}, \ldots.

The extension denotes whether coordinate time ({\.tl}) or proper time
({\.ul}) is used for the first column.

\begin{itemize}

  \item {\tt rsch\_R?.[tu]l} 

	The extracted areal radius on each 2-sphere.

  \item {\tt mass\_R?.[tu]l}

	Mass estimate calculated from $g_{rr}$ on each 2-sphere.

  \item {\tt Qeven\_R?\_??.[tu]l}

	The even parity gauge invariate variable ({\it waveform}) on 
	each 2-sphere. This is a complex quantity, the 2nd column is 
	the real part, and the third column the imaginary part.

  \item {\tt Qodd\_R?\_??.[tu]l}

	The odd parity gauge invariate variable ({\it waveform}) on 
	each 2-sphere. This is a complex quantity, the 2nd column is 
	the real part, and the third column the imaginary part.

  \item {\tt ADMmass\_R?.[tu]l}

	Estimate of ADM mass enclosed within each 2-sphere.
	(To produce this set {\tt doADMmass = ``yes''}).

  \item {\tt momentum\_[xyz]\_R?.[tu]l}

	Estimate of momentum at each 2-sphere.
	(To produce this set {\tt do\_momentum = ``yes''}).

  \item {\tt spin\_[xyz]\_R?.[tu]l}

	Estimate of momentum at each 2-sphere.
	(To produce this set {\tt do\_spin = ``yes''}).


\end{itemize}

\section{History}

Much of the source code
 for Extract comes from a code written outside
of Cactus for extracting waveforms from data generated by the NCSA
G-Code for compare with linear evolutions of waveforms extracted from
the Cauchy initial data.  This work was carried out in collaboration
with Karen Camarda and Ed Seidel.


\section{Appendix: Regge-Wheeler Harmonics}

\label{reggewheeler}

\begin{eqnarray*}
(\hat{e}_1)^{lm} &=& 
\left( \begin{array}{ccc}
0  & -\frac{1}{\s}\Yp & \s \Yt \\
.  & 0                                & 0                        \\
.  & 0                                & 0 
\end{array}\right)
\\
(\hat{e}_2)^{lm} &=& 
\left( \begin{array}{ccc} 
0 & 0 & 0 \\
0 & \frac{1}{\s}(\Ytp-\cot\t \Yp) & . \\
0 & -\frac{\s}{2}[\Ytt-\cot\t 
    \Yt-\frac{1}{\sin^2\t}\Ypp]           & 
            -\s [\Ytp-\cot\t \Yp]
\end{array}\right)
\\
(\hat{f}_1)^{lm} &=& 
\left( \begin{array}{ccc}
  0 & \Yt & \Yp \\
  . & 0   & 0           \\
  . & 0   & 0 
\end{array}\right)
\\
(\hat{f}_2)^{lm} &=& 
\left( \begin{array}{ccc}
\Y & 0 & 0 \\
0      & 0 & 0 \\
0      & 0 & 0 
\end{array}\right)
\\
(\hat{f}_3)^{lm} &=& 
\left( \begin{array}{ccc}
0 & 0  & 0                  \\
0 & \Y & 0                  \\
0 & 0  & \sin^2\t \Y 
\end{array}\right)
\\
(\hat{f}_4)^{lm} &=& 
\left( \begin{array}{ccc}
0 & 0                   & 0 \\
0 & \Ytt & . \\
0 & \Ytp-\cot \t \Yp & \Ypp+ \s \c \Yt
\end{array}\right)
\end{eqnarray*}

\section{Appendix: Transformation Between Cartesian and Spherical Coordinates}

First, the transformations between metric components in $(x,y,z)$ and $(r,\t,\p)$ coordinates. Here, $\rho=\sqrt{x^2+y^2}=r\s$,
\begin{eqnarray*}
  \frac{\partial x}{\partial r}
  &=&
  \sin\t\cos\p 
  =
  \frac{x}{r}
\\
  \frac{\partial y}{\partial r}
  &=&
  \sin\t\sin\p 
  =
  \frac{y}{r}
\\
  \frac{\partial z}{\partial r}
  &=&
  \cos\t 
  =
  \frac{z}{r}
\\
  \frac{\partial x}{\partial \t}
  &=&
  r\cos\t\cos\p 
  =
  \frac{xz}{\rho}
\\
  \frac{\partial y}{\partial \t}
  &=&
  r\cos\t\sin\p 
  =
  \frac{yz}{\rho}
\\
  \frac{\partial z}{\partial \t}
  &=&
  -r\sin\t 
  =
  -\rho
\\
  \frac{\partial x}{\partial \p}
  &=&
  -r\sin\t\sin\p
  =
  -y
\\
  \frac{\partial y}{\partial \p}
  &=&
  r\sin\t\cos\p 
  =
  x
\\
  \frac{\partial z}{\partial \p}
  &=&
  0
\end{eqnarray*}


\begin{eqnarray*}
  \gamma_{rr} &=&
  \frac{1}{r^2}
     (x^2\gamma_{xx}+
      y^2\gamma_{yy}+
      z^2\gamma_{zz}+
      2xy\gamma_{xy}+
      2xz\gamma_{xz}+
      2yz\gamma_{yz})
\\
  \gamma_{r\t} &=&
  \frac{1}{r\rho}
     (x^2 z \gamma_{xx}
     +y^2 z \gamma_{yy}
     -z \rho^2 \gamma_{zz}
     +2xyz \gamma_{xy}
     +x(z^2-\rho^2)\gamma_{xz}
     +y(z^2-\rho^2)\gamma_{yz})
\\
  \gamma_{r\p} &=&
  \frac{1}{r}
     (-xy\gamma_{xx}
      +xy\gamma_{yy}
      +(x^2-y^2)\gamma_{xy}
      -yz \gamma_{xz}
      +xz\gamma_{yz})
\\
  \gamma_{\t\t} &=&
  \frac{1}{\rho^2}
  (x^2z^2\gamma_{xx}
  +2xyz^2\gamma_{xy}
  -2xz\rho^2\gamma_{xz}
  +y^2z^2\gamma_{yy}
  -2yz\rho^2\gamma_{yz}
  +\rho^4\gamma_{zz})
\\
  \gamma_{\t\p} &=&
  \frac{1}{\rho}
  (-xyz\gamma_{xx}
   +(x^2-y^2)z\gamma_{xy}
   +\rho^2 y \gamma_{xz}
   +xyz\gamma_{yy}
   -\rho^2 x \gamma_{yz})
\\
  \gamma_{\p\p} &=&
   y^2\gamma_{xx}
   -2xy\gamma_{xy}
   +x^2\gamma_{yy}
\end{eqnarray*}   
or,
\begin{eqnarray*}
\gamma_{rr}&=&
\sin^2\t\cos^2\p\gamma_{xx}
+\sin^2\t\sin^2\p\gamma_{yy}
+\cos^2\t\gamma_{zz}
+2\sin^2\theta\cos\p\sin\p\gamma_{xy}
+2\sin\t\cos\t\cos\p\gamma_{xz}
\\
&&
+2\s\c\sin\p\gamma_{yz}
\\
\gamma_{r\t}&=&
r(\s\c\cos^2\phi\gamma_{xx}
+2*\s\c\sin\p\cos\p\gamma_{xy}
+(\cos^2\t-\sin^2\t)\cos\p\gamma_{xz}
+\s\c\sin^2\p\gamma_{yy}
\\
&&
+(\cos^2\t-\sin^2\t)\sin\p\gamma_{yz}
-\s\c\gamma_{zz})
\\
\gamma_{r\p}&=&
r\s(-\s\sin\p\cos\p\gamma_{xx}
-\s(\sin^2\p-\cos^2\p)\gamma_{xy}
-\c\sin\p\gamma_{xz}
+\s\sin\p\cos\p\gamma_{yy}
\\
&&
+\c\cos\p\gamma_{yz})
\\
\gamma_{\t\t}&=&
r^2(\cos^2\t\cos^2\p\gamma_{xx}
+2\cos^2\t\sin\p\cos\p\gamma_{xy}
-2\s\c\cos\p\gamma_{xz}
+\cos^2\t\sin^2\p\gamma_{yy}
\\
&&
-2\s\c\sin\p\gamma_{yz}
+\sin^2\t\gamma_{zz})
\\
\gamma_{\t\p}&=&
r^2\s(-\c\sin\p\cos\p\gamma_{xx}
-\c(\sin^2\p-\cos^2\p)\gamma_{xy}
+\s\sin\p\gamma_{xz}
+\c\sin\p\cos\p\gamma_{yy}
\\
&&
-\s\cos\p\gamma_{yz})
\\
\gamma_{\p\p}&=&
r^2\sin^2\t(\sin^2\p\gamma_{xx}
-2\sin\p\cos\p\gamma_{xy}
+\cos^2\phi\gamma_{yy})
\end{eqnarray*}


We also need 
the transformation for the radial derivative of the metric components:
\begin{eqnarray*}
\gamma_{rr,\eta}&=&
\sin^2\t\cos^2\p\gamma_{xx,\eta}
+\sin^2\t\sin^2\p\gamma_{yy,\eta}
+\cos^2\t\gamma_{zz,\eta}
+2\sin^2\theta\cos\p\sin\p\gamma_{xy,\eta}
\\
&&
+2\sin\t\cos\t\cos\p\gamma_{xz,\eta}
+2\s\c\sin\p\gamma_{yz,\eta}
\\
\gamma_{r\t,\eta}&=& 
\frac{1}{r}\gamma_{r\t}+
r(\s\c\cos^2\phi\gamma_{xx,\eta}
+\s\c\sin\p\cos\p\gamma_{xy,\eta}
+(\cos^2\t-\sin^2\t)\cos\p\gamma_{xz,\eta}
\\
&&
+\s\c\sin^2\p\gamma_{yy,\eta}
+(\cos^2\t-\sin^2\t)\sin\p\gamma_{yz,\eta}
-\s\c\gamma_{zz,\eta})
\\
\gamma_{r\p,\eta}&=&
\frac{1}{r}\gamma_{r\p}+
r\s(-\s\sin\p\cos\p\gamma_{xx,\eta}
-\s(\sin^2\p-\cos^2\p)\gamma_{xy,\eta}
-\c\sin\p\gamma_{xz,\eta}
\\
&&
+\s\sin\p\cos\p\gamma_{yy,\eta}
+\c\cos\p\gamma_{yz,\eta})
\\
\gamma_{\t\t,\eta}&=&
\frac{2}{r}\gamma_{\t\t}+
r^2(\cos^2\t\cos^2\p\gamma_{xx,\eta}
+2\cos^2\t\sin\p\cos\p\gamma_{xy,\eta}
-2\s\c\cos\p\gamma_{xz,\eta}
\\
&&
+\cos^2\t\sin^2\p\gamma_{yy,\eta}
-2\s\c\sin\p\gamma_{yz,\eta}
+\sin^2\t\gamma_{zz,\eta})
\\
\gamma_{\t\p,\eta}&=&
\frac{2}{r}\gamma_{\t\p}+
r^2\s(-\c\sin\p\cos\p\gamma_{xx,\eta}
-\c(\sin^2\p-\cos^2\p)\gamma_{xy,\eta}
+\s\sin\p\gamma_{xz,\eta}
\\
&&
+\c\sin\p\cos\p\gamma_{yy,\eta}
-\s\cos\p\gamma_{yz,\eta})
\\
\gamma_{\p\p,\eta}&=&
\frac{2}{r}\gamma_{\p\p}+
r^2\sin^2\t(\sin^2\p\gamma_{xx,\eta}
-2\sin\p\cos\p\gamma_{xy,\eta}
+\cos^2\phi\gamma_{yy,\eta})
\end{eqnarray*}

\section{Appendix: Integrations Over the 2-Spheres}


This is done by using Simpson's rule twice. Once in each coordinate 
direction. Simpson's rule is
\begin{equation}
\int^{x_2}_{x_1} f(x) dx = 
  \frac{h}{3} [f_1+4f_2+2f_3+4f_4+\ldots+2f_{N-2}+4 f_{N-1}+f_N]
  +O(1/N^4)
\end{equation}
$N$ must be an odd number.


\begin{thebibliography}{9}
\bibitem{abrahams94}    Abrahams A.M. \& Cook G.B. 
                        ``Collisions of boosted black holes: 
                          Perturbation theory predictions of 
                          gravitational radiation'' 
                        {\em Phys. Rev. D} 
                        {\bf 50} 
                        R2364-R2367 
                        (1994).
\bibitem{abrahams95}    Abrahams A.M., Shapiro S.L. \& Teukolsky S.A.  
                        ``Calculation of gravitational wave forms from 
                          black hole collisions and disk collapse: Applying
                          perturbation theory to numerical spacetimes''
                        {\em Phys. Rev. D.} 
                        {\bf 51}
                        4295
                        (1995).
\bibitem{abrahams96a}   Abrahams A.M. \& Price R.H. 
                        ``Applying black hole perturbation
                          theory to numerically generated spacetimes'' 
                        {\em Phys. Rev. D.} 
                        {\bf 53} 
                        1963 
                        (1996).
\bibitem{abrahams96b}   Abrahams A.M. \& Price R.H. 
                        ``Black-hole collisions from Brill-Lindquist 
                          initial data: Predictions of perturbation theory'' 
                        {\em Phys. Rev. D.} 
                        {\bf 53} 
                        1972 
                        (1996).
\bibitem{abram}         Abramowitz, M. \& Stegun A. 
                        ``Pocket Book of Mathematical Functions 
                          (Abridged Handbook of Mathematical Functions'', 
                        Verlag Harri Deutsch 
                        (1984).
\bibitem{andrade96}     Andrade Z., \& Price R.H. 
                        ``Head-on collisions of unequal mass black holes:
                          Close-limit predictions'', 
                        preprint 
                        (1996).
\bibitem{anninos95}     Anninos P., Price R.H., Pullin J., Seidel E., 
                          and Suen W-M. 
                        ``Head-on collision of two black holes: 
                          Comparison of different approaches''
                        {\em Phys. Rev. D.} 
                        {\bf 52} 
                        4462 
                        (1995).
\bibitem{arfken}        Arfken, G. 
                        ``Mathematical Methods for Physicists'', 
                        Academic Press 
                        (1985).
\bibitem{baker96}       Baker J., Abrahams A., Anninos P., Brant S., 
                          Price R., Pullin J. \& Seidel E. 
                        ``The collision of boosted black holes'' 
                        (preprint) 
                        (1996).
\bibitem{baker97}       Baker J. \& Li C.B.
                        ``The two-phase approximation for black hole 
                          collisions: Is it robust''
                        preprint (gr-qc/9701035),
                        (1997).
\bibitem{brandt96}      Brandt S.R. \& Seidel E. 
                        ``The evolution of distorted rotating black holes III:
                          Initial data'' 
                        (preprint) 
                        (1996).
\bibitem{cunningham78}  Cunningham C.T., Price R.H., Moncrief V.,
                        ``Radiation from collapsing 
                          relativistic stars. 
                          I. Linearized Odd-Parity Radiation''
                        {\em Ap. J.}
                        {\bf 224}
                        543-667
                        (1978).
\bibitem{cunningham79}  Cunningham C.T., Price R.H., Moncrief V.,
                        ``Radiation from collapsing 
                          relativistic stars. 
                          I. Linearized Even-Parity Radiation''
                        {\em Ap. J.}
                        {\bf 230}
                        870-892
                        (1979).
\bibitem{landau80}      Landau L.D. \& Lifschitz E.M.,
                        ``The Classical Theory of Fields''
                        (4th Edition),
                        Pergamon Press
                        (1980).
\bibitem{mathews}       Mathews J. ``'', 
                        {\em J. Soc. Ind. Appl. Math.} 
                        {\bf 10}
                        768 
                        (1962).
\bibitem{moncrief74}    Moncrief V. ``Gravitational perturbations of spherically
                        symmetric systems. I. The exterior problem''
                        {\em Annals of Physics} 
                        {\bf 88}
                        323-342 
                        (1974).
\bibitem{numrec}        Press W.H., Flannery B.P., Teukolsky S.A., \& Vetterling W.T.,
                        ``Numerical Recipes, The Art of Scientific Computing''
                        {\em Cambridge University Press} 
                        (1989).
\bibitem{price94}       Price R.H. \& Pullin J. 
                        ``Colliding black holes: The close limit'',
                        {\em Phys. Rev. Lett.} 
                        {\bf 72} 
                        3297-3300 
                        (1994).
\bibitem{regge}         Regge T., \& Wheeler J.A. 
                        ``Stability of a Schwarzschild Singularity'', 
                        {\em Phys. Rev. D} 
                        {\bf 108} 
                        1063 
                        (1957).
\bibitem{seidel90}      Seidel E. 
                        {\em Phys Rev D.} 
                        {\bf 42} 
                        1884 
                        (1990).
\bibitem{thorne80}      Thorne K.S., 
                        ``Multipole expansions of gravitational radiation'', 
                        {\em Rev. Mod. Phys.} 
                        {\bf 52} 
                        299 
                        (1980).
\bibitem{vish}          Vishveshwara C.V., 
                        ``Stability of the Schwarzschild metric'',
                        {\em Phys. Rev. D.} 
                        {\bf 1} 
                        2870, 
                        (1970).
\bibitem{zerilli70a}    Zerilli F.J., 
                        ``Tensor harmonics in canonical form for gravitational 
                          radiation and other applications'', 
                        {\em J. Math. Phys.} 
                        {\bf 11} 
                        2203, 
                        (1970).
\bibitem{zerilli70}     Zerilli F.J., 
                        ``Gravitational field of a particle falling 
                          in a Schwarzschild geometry analysed in 
                          tensor harmonics'',
                        {\em Phys. Rev. D.} 
                        {\bf 2} 
                        2141, 
                        (1970).
\end{thebibliography}

% Do not delete next line
% END CACTUS THORNGUIDE

\end{document}