aboutsummaryrefslogtreecommitdiff
path: root/src/ADMmass_integrand3D.F
diff options
context:
space:
mode:
Diffstat (limited to 'src/ADMmass_integrand3D.F')
-rw-r--r--src/ADMmass_integrand3D.F170
1 files changed, 170 insertions, 0 deletions
diff --git a/src/ADMmass_integrand3D.F b/src/ADMmass_integrand3D.F
new file mode 100644
index 0000000..06b1198
--- /dev/null
+++ b/src/ADMmass_integrand3D.F
@@ -0,0 +1,170 @@
+#include "cctk.h"
+
+c ========================================================================
+
+ SUBROUTINE ADMmass_integrand3D(origin,Dx,Dy,Dz,x,y,z,gxx,gxy,gxz,
+ & gyy,gyz,gzz,ADMmass_int,Psi,Psi_power)
+
+c ------------------------------------------------------------------------
+c
+c Estimates the ADM mass at a given radius using Equation (7) from
+c O Murchadha and York, Phys Rev D, 10, 1974 page 2345
+c
+c ------------------------------------------------------------------------
+
+ IMPLICIT NONE
+
+c Input variables
+ INTEGER,INTENT(IN) ::
+ & Psi_power
+ CCTK_REAL,INTENT(IN) ::
+ & Dx,Dy,Dz,origin(3)
+ CCTK_REAL,DIMENSION(:),INTENT(IN) ::
+ & x,y,z
+ CCTK_REAL,DIMENSION(:,:,:),INTENT(IN) ::
+ & gxx,gxy,gxz,gyy,gyz,gzz,Psi
+
+c Output variables
+ CCTK_REAL,DIMENSION(:,:,:),INTENT(OUT) ::
+ & ADMmass_int
+
+c Local variables, here only
+ INTEGER ::
+ & i,j,k,ip
+ CCTK_REAL,PARAMETER ::
+ & half = 0.5D0
+ CCTK_REAL ::
+ & rad,ux,uy,uz,det,dxx,dxy,dxz,dyy,dyz,dzz,uxx,uxy,uxz,uyy,
+ & uyz,uzz,term1,term2,term3,dxx_y,dxx_z,dxy_x,dxy_y,dxy_z,
+ & dyy_x,dxz_x,dxz_y,dxz_z,dyz_x,dzz_x,dyy_z,dyz_y,dyz_z,dzz_y,
+ & Pi,idet,p,pip,pim,pjp,pjm,pkp,pkm
+
+c ------------------------------------------------------------------------
+
+ Pi = ACOS(-1D0)
+
+c Because other codes evolve Psi**4
+ SELECT CASE (Psi_power)
+
+ CASE (1)
+ ip = 4
+
+ CASE (4)
+ ip = 1
+
+ CASE DEFAULT
+ WRITE(*,*) "This value of Psi_power is not supported"
+
+ END SELECT
+
+
+ DO k = 2, SIZE(z)-1
+ DO j = 2, SIZE(y)-1
+ DO i = 2, SIZE(x)-1
+
+ rad = SQRT((x(i)-origin(1))**2
+ & +(y(j)-origin(2))**2
+ & +(z(k)-origin(3))**2)
+
+ IF (rad.NE.0) THEN
+
+ ux = (x(i)-origin(1))/rad
+ uy = (y(j)-origin(2))/rad
+ uz = (z(k)-origin(3))/rad
+
+c Abbreviations for metric coefficients
+c -------------------------------------
+ p = psi(i,j,k)**ip
+
+ dxx = p*gxx(i,j,k); dxy = p*gxy(i,j,k)
+ dxz = p*gxz(i,j,k); dyy = p*gyy(i,j,k)
+ dyz = p*gyz(i,j,k); dzz = p*gzz(i,j,k)
+
+c Determinant of 3-metric
+c -----------------------
+ det = (dxx*dyy*dzz + 2.0D0*dxy*dxz*dyz
+ & - (dxx*dyz**2 + dyy*dxz**2 + dzz*dxy**2))
+
+ idet = 1.0/det
+
+c Inverse 3-metric
+c ----------------
+ uxx = idet*(dyy*dzz - dyz**2)
+ uyy = idet*(dxx*dzz - dxz**2)
+ uzz = idet*(dxx*dyy - dxy**2)
+ uxy = idet*(dxz*dyz - dzz*dxy)
+ uxz = idet*(dxy*dyz - dyy*dxz)
+ uyz = idet*(dxy*dxz - dxx*dyz)
+
+c Derivatives of the 3-metric
+c ---------------------------
+ pip = psi(i+1,j,k)**ip
+ pim = psi(i-1,j,k)**ip
+ pjp = psi(i,j+1,k)**ip
+ pjm = psi(i,j-1,k)**ip
+ pkp = psi(i,j,k+1)**ip
+ pkm = psi(i,j,k-1)**ip
+
+ dxx_y = half/Dy*(pjp*gxx(i,j+1,k)-pjm*gxx(i,j-1,k))
+ dxx_z = half/Dz*(pkp*gxx(i,j,k+1)-pkm*gxx(i,j,k-1))
+ dxy_x = half/Dx*(pip*gxy(i+1,j,k)-pim*gxy(i-1,j,k))
+ dxy_y = half/Dy*(pjp*gxy(i,j+1,k)-pjm*gxy(i,j-1,k))
+ dxy_z = half/Dz*(pkp*gxy(i,j,k+1)-pkm*gxy(i,j,k-1))
+ dyy_x = half/Dx*(pip*gyy(i+1,j,k)-pim*gyy(i-1,j,k))
+ dyy_z = half/Dz*(pkp*gyy(i,j,k+1)-pkm*gyy(i,j,k-1))
+ dxz_x = half/Dx*(pip*gxz(i+1,j,k)-pim*gxz(i-1,j,k))
+ dxz_y = half/Dy*(pjp*gxz(i,j+1,k)-pjm*gxz(i,j-1,k))
+ dxz_z = half/Dz*(pkp*gxz(i,j,k+1)-pkm*gxz(i,j,k-1))
+ dyz_x = half/Dx*(pip*gyz(i+1,j,k)-pim*gyz(i-1,j,k))
+ dyz_y = half/Dy*(pjp*gyz(i,j+1,k)-pjm*gyz(i,j-1,k))
+ dyz_z = half/Dz*(pkp*gyz(i,j,k+1)-pkm*gyz(i,j,k-1))
+ dzz_x = half/Dx*(pip*gzz(i+1,j,k)-pim*gzz(i-1,j,k))
+ dzz_y = half/Dy*(pjp*gzz(i,j+1,k)-pjm*gzz(i,j-1,k))
+
+ term1 = uxy*(dxx_y-dxy_x)+uxz*(dxx_z-dxz_x)
+ & +uyy*(dxy_y-dyy_x)+uyz*(dxy_z-dyz_x)
+ & +uyz*(dxz_y-dyz_x)+uzz*(dxz_z-dzz_x)
+
+ term2 = uyz*(dyy_z-dyz_y)+uxy*(dyy_x-dxy_y)
+ & +uzz*(dyz_z-dzz_y)+uxz*(dyz_x-dxz_y)
+ & +uxz*(dxy_z-dxz_y)+uxx*(dxy_x-dxx_y)
+
+ term3 = uxz*(dzz_x-dxz_z)+uyz*(dzz_y-dyz_z)
+ & +uxx*(dxz_x-dxx_z)+uxy*(dxz_y-dxy_z)
+ & +uxy*(dyz_x-dxy_z)+uyy*(dyz_y-dyy_z)
+
+ ADMmass_int(i,j,k) = 1.0D0/16.0D0/Pi*(ux*term1+
+ & uy*term2+uz*term3)*SQRT(det)*rad**2
+
+ ELSE
+
+ ADMmass_int(i,j,k) = 0.0D0
+
+ ENDIF
+
+ ENDDO
+ ENDDO
+ ENDDO
+
+
+c This is needed when the grid is an octant, but it does not hurt
+c if it is not
+
+ DO k = 2, size(z)-1
+ DO j = 2, size(y)-1
+ ADMmass_int(1,j,k) = ADMmass_int(2,j,k)
+ ENDDO
+ ENDDO
+ DO k = 2, size(z)-1
+ DO i = 1, size(x)-1
+ ADMmass_int(i,1,k) = ADMmass_int(i,2,k)
+ ENDDO
+ ENDDO
+ DO j = 1, size(y)-1
+ DO i = 1, size(x)-1
+ ADMmass_int(i,j,1) = ADMmass_int(i,j,2)
+ ENDDO
+ ENDDO
+
+
+ END SUBROUTINE ADMmass_integrand3D