aboutsummaryrefslogtreecommitdiff
path: root/src/metrics/Schwarzschild_Novikov.F77
blob: 2f797d22c03f02319f0ad93ca13c0392334eaf59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
c     The metric given here corresponds to the novikov solution
c     in isotropic coordinates, as presented first in Bruegman96 
c     then in correct form in Cactus paper 1. This code is the code
c     which was used for the comparisons in cactus paper 1, and is written
c     by PW with input from BB.
C
C Author: unknown
C Copyright/License: unknown
C
C $Header$


#include "cctk.h"
#include "cctk_Parameters.h"

      subroutine Exact__Schwarzschild_Novikov(
     $     x, y, z, t,
     $     gdtt, gdtx, gdty, gdtz, 
     $     gdxx, gdyy, gdzz, gdxy, gdyz, gdzx,
     $     gutt, gutx, guty, gutz, 
     $     guxx, guyy, guzz, guxy, guyz, guzx,
     $     psi, Tmunu_flag)

      implicit none

      DECLARE_CCTK_PARAMETERS

c input arguments
      CCTK_REAL x, y, z, t

c output arguments
      CCTK_REAL gdtt, gdtx, gdty, gdtz, 
     $       gdxx, gdyy, gdzz, gdxy, gdyz, gdzx,
     $       gutt, gutx, guty, gutz, 
     $       guxx, guyy, guzz, guxy, guyz, guzx
      CCTK_REAL psi
      LOGICAL   Tmunu_flag

c local variables
      CCTK_REAL eps, mass
      CCTK_REAL r,c,psi4

      CCTK_REAL nov_dr_drmax, nov_rmax, nov_r
      CCTK_REAL grr, gqq, detg

      CCTK_REAL psi4_o_r2

c constants
      CCTK_REAL zero,one,two
      parameter (zero=0.0d0, one=1.0d0, two=2.0d0)

C This is a vacuum spacetime with no cosmological constant
      Tmunu_flag = .false.

C     Get parameters of the exact solution.

      eps = Schwarzschild_Novikov__epsilon
      mass= Schwarzschild_Novikov__mass

      r = max(sqrt(x**2 + y**2 + z**2), eps)

c     Find r.
      r = sqrt(x**2 + y**2 + z**2)

c     Find conformal factor.
      c = mass/(two*r)
      psi4 = (one + c)**4

c     Evaluate novikov stuff. Note abs(t) since the data is time
c     symmetric (the metric is, at least...)
      grr = nov_dr_drmax(abs(t),abs(r))
      gqq = nov_r(abs(t),abs(r))

      grr = grr **2
      gqq = gqq**2 / nov_rmax(abs(r))**2


c     Find metric components.
      psi4_o_r2 = psi4 / r**2

      gdtt = - 1.0D0

      gdtx = zero
      gdty = zero
      gdtz = zero

c     This is just straightforward spherical -> cartesian I hope... ;-)
c     Note at t=0 (grr = gqq = 1) this gives the expected result
c     (namely diagonal psi^4, since psi4_o_r2 = psi^4 / r^2)
      gdxx = (grr * x**2 + gqq * (y**2 + z**2)) * psi4_o_r2
      gdyy = (grr * y**2 + gqq * (x**2 + z**2)) * psi4_o_r2
      gdzz = (grr * z**2 + gqq * (x**2 + y**2)) * psi4_o_r2
 
      gdxy = (grr - gqq) * x * y * psi4_o_r2
      gdzx = (grr - gqq) * x * z * psi4_o_r2
      gdyz = (grr - gqq) * y * z * psi4_o_r2

c     Find inverse metric.
      gutt = one/gdtt
      gutx = zero
      guty = zero
      gutz = zero
      detg = gdtt*gdxx*gdyy*gdzz-gdtt*gdxx*gdyz**2/4.D0-gdtt*gdxy**2*gdz
     $z/4.D0+gdtt*gdxy*gdzx*gdyz/4.D0-gdtt*gdzx**2*gdyy/4.D0
      guxx = -gdtt*(-4.D0*gdyy*gdzz+gdyz**2)/(4.D0 * detg)
      guxy = -gdtt*(2.D0*gdxy*gdzz-gdzx*gdyz)/(4.D0 * detg)
      guzx = gdtt*(gdxy*gdyz-2.D0*gdzx*gdyy)/(4.D0 * detg)
      guyy = gdtt*(4.D0*gdxx*gdzz-gdzx**2)/(4.D0 * detg)
      guyz = -gdtt*(2.D0*gdxx*gdyz-gdxy*gdzx)/(4.D0 * detg)
      guzz = gdtt*(4.D0*gdxx*gdyy-gdxy**2)/(4.D0 * detg)

      guxx = one/psi4
      guyy = one/psi4
      guzz = one/psi4

      guxy = zero
      guyz = zero
      guzx = zero

      return
      end

c     These are functions which evaluate the novikov stuff.

c     dr/drmax
      CCTK_REAL function nov_dr_drmax(tauin,rbarin)

      implicit none

      CCTK_REAL rbarin, tauin
      CCTK_REAL rt, nov_r, rmaxt, nov_rmax

      rt = nov_r(tauin, rbarin)
      rmaxt = nov_rmax(rbarin)
      nov_dr_drmax = 1.5D0 - rt / (2.0D0 * rmaxt) + 
     $     1.5D0 * sqrt(rmaxt / rt - 1.0D0) *
     $     acos(sqrt(rt/rmaxt))

      return
      end



c
c     Bisection to invert the function below. This is pretty crappy
c     but it works.
c
      CCTK_REAL function nov_r(tauin, rbarin)
      implicit none
c     input
      CCTK_REAL tauin, rbarin

c     funtions
      CCTK_REAL nov_rmax, nov_tau

c     temps
      CCTK_REAL rg, drg, delt, ttmp, rmt
      CCTK_REAL eps
      integer nit
      nit = 0
      delt = 1000.0D0
      rmt = nov_rmax(rbarin)
      rg  = rmt
      drg = rg / 2.0D0
      eps = 1.d-6 * rmt
      do while (delt .gt. eps .and. nit .lt. 100)
         ttmp = nov_tau(rg, rmt)
         delt = abs(tauin - ttmp)
         if (delt .gt. eps) then 
            if (ttmp .gt. tauin .or. rg .lt. drg) then 
               rg = rg + drg
c     Enforce upper bound
               if (rg .gt. rmt) rg = rmt
               drg = drg / 2.0D0
            else
               rg = rg - drg
            endif
         endif
c         write (*,*) rg, ttmp, tauin
         nit = nit + 1
      enddo
      if (nit .ge. 100) then
         write (*,*) "Novikov: inversion did not converge"
      endif
      nov_r = rg
      return
      end

c     Evaluate tau as a function of r and rmax
      CCTK_REAL function nov_tau(r, rmax)
      implicit none
      CCTK_REAL r, rmax

      nov_tau=  rmax * sqrt(0.5D0 * r * (1.0D0 - r / rmax)) +
     $     2.0D0 * (rmax / 2)**(3.0/2.0) *
     $     acos (sqrt(r/rmax))

      return
      end

c     Evaluate rmax as a function of rbar
      CCTK_REAL function nov_rmax(rbar)
      implicit none
      CCTK_REAL rbar
      nov_rmax = (1.0D0 + 2.0D0*rbar)**2 / (4.0D0 * rbar)
      return
      end