aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: 58e96779252e2fb3910e4829f6c206152e6d148b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
% *======================================================================*
%  Cactus Thorn template for ThornGuide documentation
%  Author: Ian Kelley
%  Date: Sun Jun 02, 2002
%  $Header$
%
%  Thorn documentation in the latex file doc/documentation.tex 
%  will be included in ThornGuides built with the Cactus make system.
%  The scripts employed by the make system automatically include 
%  pages about variables, parameters and scheduling parsed from the 
%  relevent thorn CCL files.
%  
%  This template contains guidelines which help to assure that your     
%  documentation will be correctly added to ThornGuides. More 
%  information is available in the Cactus UsersGuide.
%                                                    
%  Guidelines:
%   - Do not change anything before the line
%       % BEGIN CACTUS THORNGUIDE",
%     except for filling in the title, author, date etc. fields.
%        - Each of these fields should only be on ONE line.
%        - Author names should be sparated with a \\ or a comma
%   - You can define your own macros are OK, but they must appear after
%     the BEGIN CACTUS THORNGUIDE line, and do not redefine standard 
%     latex commands.
%   - To avoid name clashes with other thorns, 'labels', 'citations', 
%     'references', and 'image' names should conform to the following 
%     convention:          
%       ARRANGEMENT_THORN_LABEL
%     For example, an image wave.eps in the arrangement CactusWave and 
%     thorn WaveToyC should be renamed to CactusWave_WaveToyC_wave.eps
%   - Graphics should only be included using the graphix package. 
%     More specifically, with the "includegraphics" command. Do
%     not specify any graphic file extensions in your .tex file. This 
%     will allow us (later) to create a PDF version of the ThornGuide
%     via pdflatex. |
%   - References should be included with the latex "bibitem" command. 
%   - use \begin{abstract}...\end{abstract} instead of \abstract{...}
%   - For the benefit of our Perl scripts, and for future extensions, 
%     please use simple latex.     
%
% *======================================================================* 
% 
% Example of including a graphic image:
%    \begin{figure}[ht]
% 	\begin{center}
%    	   \includegraphics[width=6cm]{MyArrangement_MyThorn_MyFigure}
% 	\end{center}
% 	\caption{Illustration of this and that}
% 	\label{MyArrangement_MyThorn_MyLabel}
%    \end{figure}
%
% Example of using a label:
%   \label{MyArrangement_MyThorn_MyLabel}
%
% Example of a citation:
%    \cite{MyArrangement_MyThorn_Author99}
%
% Example of including a reference
%   \bibitem{MyArrangement_MyThorn_Author99}
%   {J. Author, {\em The Title of the Book, Journal, or periodical}, 1 (1999), 
%   1--16. {\tt http://www.nowhere.com/}}
%
% *======================================================================* 

% If you are using CVS use this line to give version information
% $Header$

\documentclass{article}

% Use the Cactus ThornGuide style file
% (Automatically used from Cactus distribution, if you have a 
%  thorn without the Cactus Flesh download this from the Cactus
%  homepage at www.cactuscode.org)
\usepackage{../../../../doc/latex/cactus}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{document}

\author{Original code by Carsten Gundlach and Miguel Alcubierre, \\
        exact solutions added by many other people,	\\
	this documentation by Jonathan Thornburg,
        and by other people}

% The title of the document (not necessarily the name of the Thorn)
\title{Thorn Guide for the {\bf Exact} Thorn}

% the date your document was last changed, if your document is in CVS, 
% please us:
%    \date{$ $Date$ $}
\date{$ $Date$ $}

\maketitle

% Do not delete next line
% START CACTUS THORNGUIDE

% Add all definitions used in this documentation here 
%   \def\mydef etc

\def\thorn#1{{\bf #1}}
\def\defn#1{{\bf #1}}

% force a line break in a itemize/description/enumerate environment
\def\forcelinebreak{\mbox{}\\[-\baselineskip]}

\def\eg{e.g.\hbox{}}
\def\ie{i.e.\hbox{}}
\def\etal{{\it et~al.\/\hbox{}}}
\def\nb{n.b.\hbox{}}
\def\Nb{N.b.\hbox{}}

% math stuff
\def\dfrac#1#2{{\displaystyle\frac{#1}{#2}}}
\def\tfrac#1#2{{\textstyle   \frac{#1}{#2}}}
\def\diag{\text{diag}}
\def\Gaussian{{\sf G}}
\def\half{\tfrac{1}{2}}
\def\sech{\text{sech}}

% Add an abstract for this thorn's documentation
\begin{abstract}
This thorn sets up the $3+1$ ADM variables for any of a number
of exact spacetimes/coordinates, and even some non-Einstein
spcetimes/coordinates.  It's easy to add more spacetimes/coordinates:
all you have to supply is the 4-metric $g_{ab}$ and the inverse 4-metric
$g^{ab}$ (this thorn automagically calculates all the ADM variables
from these).  Optionally, any 4-metric can be Lorentz-boosted in any
direction.  As another option, the ADM variables can be calculated on an
arbitrary slice through the spacetime, using arbitrary coordinates on
the slice.  Given a lapse and shift, the slice can be evolved through
the exact solution, in order to check on an evolution code, or in
order to test gauge conditions without the need for an evolution code.
\end{abstract}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Introduction}

This thorn sets up the ADM variables for any of a number of
different spacetimes/coordinates (we call the combination of a
spacetime and a coordinate system a \defn{model}), as specified by the
\verb|Exact::exact_model| parameter.

By default, this thorn sets up the ADM variables on an initial
slice only.  However, setting\\
\verb|ADMBase::evolution_method = "exact"|
makes this thorn set up the ADM variables at \verb|CCTK_PRESTEP|
every time step of an evolution, so you get an exact {\em spacetime\/},
not just a single slice.

There is an option to Lorentz-boost any vacuum model
(more precisely any model which doesn't set the stress-energy tensor;
see table~\ref{AEIThorns/Exact/tab-all-models} and
section~\ref{AEIThorns/Exact/sect-Lorentz-boosting-a-spacetime}
for details) in any direction.

There is also a more general option to set up the ADM variables
on an arbitrary slice through the spacetime, using arbitrary
coordinates on the slice.  Given a lapse and shift computed by some
other thorn(s), the slice can be evolved through the exact solution,
in order to check on an evolution code, or in order to test gauge
conditions without the need for an evolution code.  This option is
documented in \verb|doc/slice_evolver.tex|.

This thorn is mainly written in a mixture of Fortran~77 and Fortran~90;
a few routines are written in C.  At present Fortran~90 is used only
for the ``arbitrary slice'' option (described in the previous paragraph).
If this option isn't needed, then the Fortran~90 code can all be
\verb|#ifdef|-ed out, allowing this thorn to be compiled on a system
having only Fortran~77 and C compilers (\ie{} no Fortran~90 compiler).
This can be done by changing a single line in \verb|src/include/Exact.inc|;
see the comments there for details.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Models Supported}

Table~\ref{AEIThorns/Exact/tab-all-models} shows the models supported
by thorn~\thorn{Exact}.%%%
\footnote{%%%
	 To add a new model, you have to modify a
	 number of files in this thorn.  See the file
	 {\tt how\_to\_add\_a\_new\_model} in the
	 {\tt doc/} directory for a detailed list of
	 what to do.  Please follow the naming conventions
	 given in the next subsection.
	 }%%%
{}  As a general policy, this thorn includes only cases where the full
4-metric $g_{ab}$ (and its inverse, although we could dispense with
that if needed) is known throughout the spacetime.  Cases where this
is only known on one specific slice, should live in separate initial
data thorns.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{table}[htbp]
\begin{center}
\hyphenpenalty=10000	% forbid hyphenation
\begin{tabular}{@{\qquad}lcp{80mm}}
Model Name
	& $T_{\mu\nu}$?
		& Description						\\
\hline %----------------------------------------------------------------
%
\multicolumn{3}{l}{\bf Minkowski spacetime}				\\
{\tt "Minkowski"}
	& --	& Minkowski spacetime					\\
{\tt "Minkowski/shift"}
	& --	& Minkowski spacetime with time-dependent shift vector	\\
{\tt "Minkowski/funny"}
	& --	& Minkowski spacetime in non-trivial spatial coordinates\\
{\tt "Minkowski/gauge wave"}
	& --	& Minkowski spacetime in gauge-wave coordinates		\\
{\tt "Minkowski/shifted gauge wave"}
	& --	& Minkowski spacetime in shifted gauge-wave coordinates	\\
{\tt "Minkowski/conf wave"}
	& --	& Minkowski spacetime with $\sin$ in conformal factor	\\[1ex]
%
\multicolumn{3}{l}{\bf Black hole spacetimes}				\\
{\tt "Schwarzschild/EF"}
	& --	& Schwarzschild spacetime
		  in Eddington-Finkelstein coordinates			\\
{\tt "Schwarzschild/PG"}
	& --	& Schwarzschild spacetime in Painlev\'{e}-Gullstrand
		  coordinates (these have a flat 3-metric)		\\
{\tt "Schwarzschild/BL"}
	& --	& Schwarzschild spacetime in Brill-Lindquist coordinates\\
{\tt "Schwarzschild/Novikov"}
	& --	& Schwarzschild spacetime in Novikov coordinates	\\
{\tt "Kerr/Boyer-Lindquist"}
	& --	& Kerr spacetime in Boyer-Lindquist coordinates		\\
{\tt "Kerr/Kerr-Schild"}
	& --	& Kerr spacetime in Kerr-Schild coordinates		\\
{\tt "Schwarzschild-Lemaitre"}
	& Yes	& Schwarzschild-Lemaitre spacetime (Schwarzschild
		  black hole with a cosmological constant)		\\
{\tt "multi-BH"}
	& --	& Majumdar-Papapetrou or Kastor-Traschen
		  maximally-charged (extreme Reissner-Nordstrom)
		  multi-BH solutions					\\
{\tt "Alvi"}
	& --	& Alvi post-Newtonian 2BH spacetime
		  (not fully implemented yet)				\\
{\tt "Thorne-fakebinary"}
	& --	& Thorne's ``fake binary'' spacetime (non-Einstein)	\\[1ex]
%
\multicolumn{3}{l}{\bf Cosmological spacetimes}				\\
{\tt "Lemaitre"}
	& Yes	& Lemaitre-type spacetime				\\
%%{\tt "Robertson-Walker"}
%%	& Yes	& Robertson-Walker spacetime				\\
{\tt "de Sitter"}
	& Yes	& de~Sitter spacetime					\\
{\tt "de Sitter+Lambda"}
	& Yes	& de~Sitter spacetime with cosmological constant	\\
{\tt "anti-de Sitter+Lambda"}
	& Yes	& anti-de~Sitter spacetime with cosmological constant	\\
{\tt "Bianchi I"}
	& --	& approximate Bianchi type~I spacetime			\\
{\tt "Goedel"}
	& --	& G\"{o}del spacetime					\\
{\tt "Bertotti"}
	& Yes	& Bertotti spacetime					\\
{\tt "Kasner"}
	& Yes	& Kasner-like spacetime					\\
{\tt "Kasner-axisymmetric"}
	& --	& axisymmetric Kasner spacetime				\\
{\tt "Kasner-generalized"}
	& Yes	& generalized Kasner spacetime				\\
{\tt "Gowdy-wave"}
	& --	& Gowdy metric (polarized wave in an expanding universe)\\
{\tt "Milne"}
	& --	& Milne spacetime for pre-big-bang cosmology		\\[1ex]
%
\multicolumn{3}{l}{\bf Miscellaneous spacetimes}			\\
{\tt "boost-rotation symmetric"}
	& --	& boost-rotation symmetric spacetime			\\
{\tt "bowl"}
	& --	& bowl (``bag of gold'') spacetime (non-Einstein)	\\
{\tt "constant density star"}
	& Yes	& constant density (Schwarzschild) star			%%%\\
\end{tabular}
\end{center}
\caption{
	This table shows all the models currently supported by
	thorn \thorn{Exact}.  The $T_{\mu\nu}$ column shows which
	models set the Cactus stress-energy tensor; as discussed in
	section~\ref{AEIThorns/Exact/cosmological-constant+stress-energy-tensor}
	this includes both all non-vacuum models and all models
	with a cosmological constant.
	}
\label{AEIThorns/Exact/tab-all-models}
\end{table}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Naming Conventions}

This thorn includes many different spacetimes and coordinate systems,
so we use the following naming conventions to help keep the different
models and parameters clear:
\begin{itemize}
\item	If we have multiple coordinate systems for a given spacetime,
	the models are named with the pattern
	\hbox{{\tt "}spacetime{\tt /}coordinates{\tt "}}.
	For example, the model \verb|"Schwarzschild/EF"| is Schwarzschild
	spacetime in Eddington-Finkelstein coordinates.%%%
\footnote{%%%
	 We abbreviate the coordinate names both for
	 convenience, and because the unabbreviated
	 names would make the variable names in the
	 code (which are the same as the parameter names)
	 too long -- C only guarantees 31~characters for
	 variable names, and the Fortran~95 standard
	 explicitly limits variable names to this same
	 maximum length.
	 }%%%
\item	If we have spacetimes which are identical or very similar,
	except that one has a cosmological constant and the other
	doesn't, we name the with-cosmological-constant one by appending
	\verb|+Lambda| to the without-cosmological-constant spacetime
	name.  For example, the cosmological-constant variant of
	anti-de Sitter spacetime is the model \verb|"anti-de Sitter+Lambda"|.
\item	All the parameters for individual models have names which begin
	with the model name (with any slash (\verb|/|) or hyphen (\verb|-|)
	characters converted to underscores (\verb|_|)), followed by
	a double underscore (\verb|__|).
\item	The description comment for each parameter in the \verb|param.ccl|
	file begins with the model name follwed by a colon (\verb|:|).
	For example,
\begin{verbatim}
REAL Schwarzschild_EF__mass "Schwarzschild/EF: BH mass"
{
*:* :: "any real number"
} 1.0
\end{verbatim}
\end{itemize}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{The Cosmological Constant and the Stress-Energy Tensor}
\label{AEIThorns/Exact/cosmological-constant+stress-energy-tensor}

A number of these models have a cosmological constant.  To use these
with the Cactus code (which generally is written for the case of no
cosmological constant), we use a simple trick: we transfer the term
with the cosmological constant to the right hand side of the Einstein
equations, introducing fictitious ``matter'' terms in the stress-energy 
tensor.

This thorn uses the standard Cactus ``\verb|CalcTmunu|'' interface
for introducing terms into the stress-energy tensor.  See Ian Hawke's
documentation for the \thorn{ADMCoupling} thorn for details.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Accuracy}

\begingroup
\bf\mathversion{bold}
This thorn has been found to set up its initial data less accurately
than you might think.  In particular, \dots

Denis Pollney has found that if this thorn is used to set up a
Schwarzschild or Kerr solution
(\verb|Schwarzschild/EF| or \verb|Kerr/Kerr-Schild| model),
there are low-level ($\sim 10^{-12}$) asymmetries between the
field variables in the supposedly-symmetric octants.

Jonathan Thornburg has found that for at least the \verb|Schwarzschild/EF|
and \verb|Kerr/Kerr-Schild| models (and quite likely for all models),
this thorn's values of the extrinsic curvature $K_{ij}$ have random
point-to-point errors of about $\sim {\textstyle\frac{1}{2}} \times 10^{-10}$
(in regions where the metric is $O(1)$.
\endgroup

We suspect that these problems may be due to this thorn's internally
first setting up the 4-metric, then computing the Bona-Masso variables
by numerically finite differencing the 4-metric%%%
\footnote{%%%
	 This seems to be done using centered
	 2nd~order finite differencing with a
	 hard-wired $10^{-6}$ grid spacing.
	 }%%%
, then computing the ADM variables from this.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Time Levels}

In the context of Cactus grid functions with (potentially) multiple
time levels,
\textbf{this thorn only sets the initial data on the current time level!}.
This is a bug. :(

If you're doing a time evolution using the standard Cactus \thorn{MoL}
thorn,
\begin{itemize}
\item	Variables that you're going to \emph{evolve}
	(for example the ADM 3-metric if you're evolving
	it directly) only need initial data to be set
	on the current time level.
\item	Other variables that are used by the evolution system,
	but aren't themselves evolved (for example the ADM 3-metric
	if you're evolving some other fields on a fixed background)
	must have initial data set on \emph{all} time levels.
	\thorn{MoL} calls these ``save-and-restore'' variables.
\end{itemize}

\thorn{MoL} offers a useful option to help work around problems
of this sort (only the current time level is set, when you need
all time levels):  If you set
\begin{verbatim}
MoL::initial_data_is_crap = true
\end{verbatim}
then \thorn{MoL} will copy the current time level to all other time
levels, for all grid functions that are registered as ``evolved'',
``save-and-restore'', and/or ``constrained'' variables.  This happens
in the \verb|POSTINITIAL| schedule bin.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Further Sources of Information}

This documentation is at best a secondary source of information about
this thorn -- the primary sources are the \verb|param.ccl| file and
the source code itself.  In particular, much of this documentation
was developed by reverse-engineering from these primary sources, so
it's quite possible (indeed even likely!) that there are errors or
omissions here.  Caveat Lector!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Lorentz-Boosting a Spacetime}
\label{AEIThorns/Exact/sect-Lorentz-boosting-a-spacetime}

For any of the models which don't set the stress-energy tensor
(\ie{} which are vacuum and have no cosmological constant;
see section~\ref{AEIThorns/Exact/cosmological-constant+stress-energy-tensor}
and table~\ref{AEIThorns/Exact/tab-all-models} for details),%%%
\footnote{%%%
	 Only $g_{ab}$ and $g^{ab}$ are transformed, not the
	 stress-energy tensor, which is why this only works
	 for models which don't set the stress-energy tensor.
	 }%%%
{} you can optionally Lorentz-boost the model by a specified 3-velocity
$v^i$.  The parameters for this are \verb|boost_vx|, \verb|boost_vy|,
and \verb|boost_vz|.

We define the Cactus spacetime coordinates to be $(t,x^i)$,
while the model is at rest in coordinates $(T,X^i)$.  The model's
``origin'' $X^i = 0$ is located at the Cactus coordinates $x^i = v^i t$.  

The boost Lorentz transformation is defined by
\begin{equation}
\renewcommand{\arraystretch}{1.333}
\begin{array}{lcl}
T		& = &	\gamma (t - \eta_{ij} v^i x^j)		\\
X^i_\parallel	& = &	\gamma (x^i_\parallel - v^i t)		\\
X^i_\perp	& = &	x^i_\perp				%%%\\
\end{array}
\end{equation}
and the inverse transformation by
\begin{equation}
\renewcommand{\arraystretch}{1.333}
\begin{array}{lcl}
t		& = &	\gamma (T + \eta_{ij} v^i X^j)		\\
x^i_\parallel	& = &	\gamma (X^i_\parallel + v^i T)		\\
x^i_\perp	& = &	X^i_\perp				%%%\\
\end{array}
\end{equation}
where $\gamma \equiv (1 - v^2)^{-1/2}$ is the usual Lorentz factor,
$\eta_{ij}$ is the flat metric, and $\parallel$ and $\perp$ refer
to the (flat-space) components of $x^i$ parallel and perpendicular
to $v^i$, respectively.

In more detail, define the unit vector $n^i = v^i / \sqrt{\eta_{jk} v^j v^k}$
and the (flat-space) projection operators
\begin{equation}
\renewcommand{\arraystretch}{1.333}
\begin{array}{lclcl}
\parallel^i{}\!_j
		& = &	\eta_{jk} n^i n^k				\\
		& \equiv &
			n^i n_j
			\qquad
			\hbox{(using $\eta_{ij}$ to raise/lower indices)}
									\\
\perp^i{}\!_j	& = &	\delta^i{}_j - \parallel^i{}\!_j		%%%\\
\end{array}
\end{equation}
Then the Lorentz transformations are
\begin{equation}
\renewcommand{\arraystretch}{1.333}
\begin{array}{lcl}
T	& = &	\gamma (t - \eta_{ij} v^i x^j)				\\
X^i	& = &	\gamma (\parallel^i{}\!_j x^j - v^i t)
		+ \perp^i{}\!_j x^j					%%%\\
\end{array}
\end{equation}
and
\begin{equation}
\renewcommand{\arraystretch}{1.333}
\begin{array}{lcl}
t	& = &	\gamma (T + \eta_{ij} v^i X^j)				\\
x	& = &	\gamma (\parallel^i{}\!_j X^j + v^i T)
		+ \perp^i{}\!_j X^j					%%%\\
\end{array}
\end{equation}
so their coordinate partial derivatives for transforming $g_{ab}$
and $g^{ab}$ are
\begin{equation}
\renewcommand{\arraystretch}{2.5}
\begin{array}{lcl@{\qquad\qquad\qquad}lcl}
\dfrac{\partial T}{\partial t}		& = &	\gamma
	&
\dfrac{\partial T}{\partial x^j}	& = &	- \gamma v^j		\\
\dfrac{\partial X^i}{\partial t}	& = &	- \gamma v^i
	&
\dfrac{\partial X^i}{\partial x^j}	& = &	\gamma \parallel^i{}\!_j
						+ \perp^i{}\!_j		%%%\\
\end{array}
\end{equation}
and
\begin{equation}
\renewcommand{\arraystretch}{2.5}
\begin{array}{lcl@{\qquad\qquad\qquad}lcl}
\dfrac{\partial t}{\partial T}		& = &	\gamma
	&
\dfrac{\partial t}{\partial X^j}	& = &	\gamma v^j		\\
\dfrac{\partial x^i}{\partial T}	& = &	\gamma v^i
	&
\dfrac{\partial x^i}{\partial X^j}	& = &	\gamma \parallel^i{}\!_j
						+ \perp^i{}\!_j		%%%\\
\end{array}
\end{equation}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Minkowski Spacetime}

This thorn can set up Minkowski spacetime using several different
types of coordinates:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Minkowski Spacetime}

\verb|Exact::exact_model = "Minkowski"| specifies Minkowski spacetime
in the usual Minkowski coordinates:
\begin{equation}
g_{ab} = \diag \left[
	 \begin{array}{cccc}
	 -1	& 1	& 1	& 1	%%%\\
	 \end{array}
	 \right]
\end{equation}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Minkowski Spacetime in Non-Trivial Spatial coordinates}

\verb|Exact::exact_model = "Minkowski/funny"| specifies Minkowski spacetime
with the usual Minkowski time slicing, but using the nontrivial spatial
coordinates defined as follows:  First take the flat metric in polar
spherical coordinates, then define a new radial coordinate by
\begin{equation}
r = r_{\text{w}} \big(1 - a \Gaussian(r_{\text{w}})\big)
\end{equation}
where 
$\Gaussian(r) = \exp(-\half r^2/\sigma^2)$ is a Gaussian centered at $r=0$.

The parameters are the perturbation amplitude
$a = \verb|Exact::Minkowski_funny__amplitude|$
and the perturbation width $\sigma = \verb|Exact::Minkowski_funny__sigma|$.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Minkowski Spacetime in Non-Trivial Slices with Shift}

\verb|Exact::exact_model = "Minkowski/shift"| specifies Minkowski spacetime
with the nontrivial time slicing and spatial coordinates defined as
follows:  First take the flat 4-metric in polar spherical coordinates,
then define a new time coordinate by
\begin{equation}
t_{\text{w}} = t - a \Gaussian(r)
\end{equation}
$\Gaussian(r) = \exp(-\half r^2/\sigma^2)$ is a Gaussian centered at $r=0$.
Note this gives a time-indpendent 4-metric.

The parameters are the perturbation amplitude
$a = \verb|Exact::Minkowski_shift__amplitude|$
and the perturbation width $\sigma = \verb|Exact::Minkowski_shift__sigma|$.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Minkowski Spacetime in gauge-wave coordinates}

\verb|Exact::exact_model = "Minkowski/gauge wave"| specifies Minkowski
spacetime with the ``gauge-wave'' coordinates suggested by Carlos Bona:
The line element is
\begin{equation}
ds^2=-H dt^2 +Hdx^2+dy^2+dz^2,
\end{equation}
where $H=H(x-t)$, for instance $H=1-A\sin\left((x-t)/\Lambda\right)$.
This is a flat spacetime, but the slice is a planar wave travelling
along the x axis.

This thorn implements several possible choices for the $H$ function,
controlled by the \verb|Minkowski_gauge_wave__what_fn| parameter:
\begin{eqnarray}
H(x-t)	&=& 1 - A \sin \left(\frac{x-\omega t}{\Lambda} - \delta\right)	\\
H(x-t)	&=& \exp \left(- A \sin \left(\frac{x-\omega t}{\Lambda}
                                      - \delta\right)\right)		\\
H(x-t)	&=& 1 - A \exp(-x^2)						%%%\\
\end{eqnarray}
The parameters are
\begin{itemize}
\item	$A = \verb|Minkowski_gauge_wave__amplitude|$, the amplitude
\item	$\omega = \verb|Minkowski_gauge_wave__omega|$, the angular frequency
\item	$\lambda = \verb|Minkowski_gauge_wave__lambda|$, the wavelength
\item	$\delta = \verb|Minkowski_gauge_wave__phase|$, the phase shift
\end{itemize}
A plane wave has $\omega = \pm \lambda$ for a wave that travels in the
$x$ direction, and $\omega = \pm \lambda \sqrt{2}$ for a diagonal wave.

If the Boolean parameter \verb|Minkowski_gauge_wave__diagonal| is true,
then we make the gauge wave travel diagonally across the grid by the
coordinate transformation
\begin{eqnarray}
x &=& \frac{1}{\sqrt{2}}(x^\prime - y^\prime)				\\
y &=& \frac{1}{\sqrt{2}}(x^\prime + y^\prime)				%%%\\
\end{eqnarray}
For code testing, the idea is to test evolving this with periodic boundary
conditions, to see whether the code is able to cope with that.
The tricky part is to make the wave fit the grid exactly (otherwise the
periodic boundary wouldn't make sence), especially in the diagonal case.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Minkowski Spacetime in shifted gauge-wave coordinates}

\verb|Exact::exact_model = "Minkowski/shifted gauge wave"| specifies Minkowski
spacetime with the ``shifted gauge-wave'' coordinates suggested by
Jeff Winicour:
The line element is
\begin{equation}
ds^2 = (H-1)\, dt^2 + (H+1)\, dx^2 - 2H\, dt\, dx + dy^2 + dz^2
\end{equation}
where $H=H(x-t)$, for instance $H=A\sin\left((x-t)/\Lambda\right)$.
This is a flat spacetime, but the slice is a planar wave travelling
along the x axis.

This thorn implements one choice for the $H$ function, controlled by
the \verb|Minkowski_gauge_wave__what_fn| parameter:
\begin{eqnarray}
H(x-t)	&=& 1 - A \sin \left(\frac{x-\omega t}{\Lambda} - \delta\right)
\end{eqnarray}

The parameters are
\begin{itemize}
\item	$A = \verb|Minkowski_gauge_wave__amplitude|$, the amplitude
\item	$\omega = \verb|Minkowski_gauge_wave__omega|$, the angular frequency
\item	$\lambda = \verb|Minkowski_gauge_wave__lambda|$, the wavelength
\item	$\delta = \verb|Minkowski_gauge_wave__phase|$, the phase shift
\end{itemize}
A plane wave has $\omega = \pm \lambda$ for a wave that travels in the
$x$ direction, and $\omega = \pm \lambda \sqrt{2}$ for a diagonal
wave.

If the Boolean parameter \verb|Minkowski_gauge_wave__diagonal| is
true, then we make the gauge wave travel diagonally across the grid by
the coordinate transformation
\begin{eqnarray}
x &=& \frac{1}{\sqrt{2}}(x^\prime - y^\prime)				\\
y &=& \frac{1}{\sqrt{2}}(x^\prime + y^\prime)				%%%\\
\end{eqnarray}
For code testing, the idea is to test evolving this with periodic
boundary conditions, to see whether the code is able to cope with
that.  The tricky part is to make the wave fit the grid exactly
(otherwise the periodic boundary wouldn't make sence), especially in
the diagonal case.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Minkowski Spacetime with $\sin$ term in conformal factor}

\verb|Exact::exact_model = "Minkowski/conf wave"| specifies Minkowski
spacetime with a $\sin$~term in the Cactus static conformal factor.
You have three parameters:
\begin{itemize}
 \item Minkowski\_conf\_wave\_\_amplitude ($a$)
 \item Minkowski\_conf\_wave\_\_wavelength ($l$)
 \item Minkowski\_conf\_wave\_\_direction ($d$)
\end{itemize}
These control $\Psi$ in the following form:
\begin{equation}
 \Psi=a\sin\left(\frac{2\pi}{l}D\right)+1
\end{equation}
Here $D$ is x, y or z according to d of 0, 1 or 2.

Alas, the ``arbitrary slice evolver'' option
(documented in \verb|doc/slice_evolver.tex|)
doesn't work with this model.  There's no warning,
you'll just silently get wrong results.  Sigh\dots

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Black Hole Spacetimes}

This thorn can set up Schwarzschild and Kerr spacetimes in several
different types of coordinates, and also a couple of multiple-black-hole
spacetimes:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Schwarzschild Spacetime in Eddington-Finkelstein coordinates}

\verb|Exact::exact_model = "Schwarzschild/EF"| specifies Schwarzschild
spacetime in (ingoing) Eddington-Finkelstein coordinates, as described
in MTW box~31.2 and figure~32.1.  The only physics parameter is
the black hole mass $m = \verb|Schwarzschild_EF__mass|$.

There is also a numerical parameter \verb|Schwarzschild_EF__epsilon|
which is used to avoid division by zero if a grid point falls exactly
at the origin; the default setting should be ok for most purposes.

In the usual polar spherical $(t,r,\theta,\phi)$ coordinates, the 4-metric
and ADM variables are
\begin{eqnarray}
g_{ab}	& = &
	\left[
	 \begin{array}{cccc}
	 - \left( 1 - \frac{2m}{r} \right)
			& \frac{2m}{r}	& 0	& 0	\\
	 \frac{2m}{r}	& 1 + \frac{2m}{r}
					& 0	& 0	\\
	 0		& 0		& r^2	& 0	\\
	 0		& 0		& 0	& r^2 \sin^2 \theta
							%%%\\
	 \end{array}
	 \right]
									\\
g_{ij}	& = &
	\diag
	\left[
	\begin{array}{ccc}
	1 + \frac{2m}{r}	& r^2	& r^2 \sin^2 \theta	%%%\\
	\end{array}
	\right]
									\\
K_{ij}	& = &
	\diag
	\left[
	\begin{array}{ccc}
	- \frac{2m^2}{r^2} \frac {1 + \frac{m}{r}} {\sqrt{1 + \frac{2m}{r}}}
				& \frac{2m^2}{\sqrt{1 + \frac{2m}{r}}}
					& \frac{2m^2}{\sqrt{1 + \frac{2m}{r}}}
					  \sin^2 \theta		%%%\\
	\end{array}
	\right]
									\\
\alpha	& = &
	\frac{1}{\sqrt{1 + \frac{2m}{r}}}
									\\
\beta^i	& = &
	\left[
	\begin{array}{ccc}
	\frac{2m}{r} \frac{1}{\sqrt{1 + \frac{2m}{r}}}
				& 0	& 0			%%%\\
	\end{array}
	\right]
									%%%\\
\end{eqnarray}
(Various other $3+1$ variables for Schwarzschild spacetime in these
coordinates are tabulated in appendix~2 of Jonathan Thornburg's Ph.D
thesis, \verb|http://www.aei.mpg.de/~jthorn/phd/html/phd.html|.)

In the Cactus $(t,x,y,z)$ Cartesian-topology coordinates the 4-metric is
\begin{equation}
g_{ab} = \left[
	 \begin{array}{cccc}
	 - \left( 1 - \frac{2m}{r} \right)
			& \frac{2m}{r} \frac{x}{r}
				& \frac{2m}{r} \frac{y}{r}
					& \frac{2m}{r} \frac{z}{r}	\\
	 \frac{2m}{r} \frac{x}{r}
			& 1 + \frac{2m}{r} \frac{x^2}{r^2}
				& \frac{2m}{r} \frac{xy}{r^2}
					& \frac{2m}{r} \frac{xz}{r^2}	\\
	 \frac{2m}{r} \frac{y}{r}
			& \frac{2m}{r} \frac{xy}{r^2}
				& 1 + \frac{2m}{r} \frac{y^2}{r^2}
					& \frac{2m}{r} \frac{yz}{r^2}	\\
	 \frac{2m}{r} \frac{z}{r}
			& \frac{2m}{r} \frac{xz}{r^2}
				& \frac{2m}{r} \frac{yz}{r^2}
					& 1 + \frac{2m}{r} \frac{z^2}{r^2}
									%%%\\
	 \end{array}
	 \right]
\end{equation}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Schwarzschild spacetime in Painlev\'{e}-Gullstrand coordinates}

\verb|Exact::exact_model = "Schwarzschild/PG"| specifies Schwarzschild
spacetime in Painlev\'{e}-Gullstrand coordinates, as described by
Martel and Poisson, gr-qc/0001069.  These coordinates have the
interesting property that the spatial metric is {\em flat\/}.
The only physics parameter is the black hole mass
$m = \verb|Schwarzschild_PG__mass|$.

There is also a numerical parameter \verb|Schwarzschild_PG__epsilon|
which is used to avoid division by zero if a grid point falls exactly
at the origin; the default setting should be ok for most purposes.

In the usual Cactus $(t,x,y,z)$ Cartesian-topology coordinates, the
4-metric is
\begin{equation}
g_{ab} = \left[
	 \begin{array}{cccc}
	 -1 + \frac{2m}{r}
		& \sqrt{\frac{2m}{r}} \frac{x}{r}
			& \sqrt{\frac{2m}{r}} \frac{y}{r}
				& \sqrt{\frac{2m}{r}} \frac{z}{r}
									\\
	 \sqrt{\frac{2m}{r}} \frac{x}{r}
		& 1	& 0	& 0					\\
	 \sqrt{\frac{2m}{r}} \frac{y}{r}
		& 0	& 1	& 0					\\
	 \sqrt{\frac{2m}{r}} \frac{z}{r}
		& 0	& 0	& 1					%%%\\
	 \end{array}
	 \right]
\end{equation}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Schwarzschild spacetime in Brill--Lindquist coordinates}

\verb|Exact::exact_model = "Schwarzschild/BL"| specifies Schwarzschild
spacetime in Brill--Lindquist coordinates.  These coordinates have the
interesting property that the spatial metric is conformally flat and
time-symmetric for the initial data.  The only physics parameter is
the black hole mass $m = \verb|Schwarzschild_BL__mass|$.

There is also a numerical parameter \verb|Schwarzschild_BL__epsilon|
which is used to avoid division by zero if a grid point falls exactly
at the origin; the default setting should be ok for most purposes.

In the usual Cactus $(t,x,y,z)$ Cartesian-topology coordinates, the
4-metric is given by
\begin{eqnarray}
   \alpha & = & 1
\\
   \beta^i & = & 0
\\
   \gamma_{ij} & = & \Psi^4\, \delta_{ij}
\end{eqnarray}
with the conformal factor
\begin{eqnarray}
   \Psi & = & 1 + \frac{m}{2r}
\end{eqnarray}
where $r$ is the coordinate radius.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Schwarzschild Spacetime in Novikov coordinates}

\verb|Exact::exact_model = "Novikov"| specifies the unit-mass Schwarzschild
spacetime in Novikov coordinates, as described in gr-qc/9608050
(see also MTW section~31.4 and figure~31.2).
The only physics parameter is the black hole mass
$m = \verb|Schwarzschild_Novikov__mass|$.

There is also a numerical parameter \verb|Schwarzschild_Novikov__epsilon|
which is used to avoid division by zero if a grid point falls exactly
at the origin; the default setting should be ok for most purposes.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Kerr Spacetime in Boyer-Lindquist coordinates}

\verb|Exact::exact_model = "Kerr/Boyer-Lindquist"| specifies Kerr
spacetime in (cartesian) Boyer-Lindquist coordinates, as described
in MTW box~33.2 (the spin axis is the $z$~axis).  The physics parameters
are the black hole mass $m = \verb|Kerr_BoyerLindquist__mass|$, and the
dimensionless spin parameter $a = J/m^2 = \verb|Kerr_BoyerLindquist__spin|$.

Mitica Vulcanov says: this metric still need some work in order to
run properly. Major problems: the convergence and calibration of the
units for the parameters and variables.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Kerr-Schild form of Boosted Rotating Black Hole}

\verb|Exact::exact_model = "Kerr/Kerr-Schild"| specifies Kerr spacetime
in Kerr-Schild coordinates, as described in MTW exercise~33.8 (the spin
axis is the $z$~axis), Lorentz boosted in the $z$ direction so the
black hole is centered at the position $z = vt$.  The physics parameters
are the black hole mass $m = \verb|Kerr_KerrSchild__mass|$, the
dimensionless spin parameter $a = J/m^2 = \verb|Kerr_KerrSchild__spin|$,
and the boost velocity $v = \verb|Kerr_KerrSchild__boost_v|$.

There is also a numerical parameter \verb|Kerr_KerrSchild__epsilon|
which is used to avoid division by zero if a grid point falls exactly
at the black hole center; the default setting should be ok for most
purposes.

Kerr-Schild coordinates use the same time slicing (\nb{} non-maximal!)
and $z$~spatial coordinate as Kerr coordinates $(x_K, y_K, z_K)$, but
define new spatial coordinates $x \equiv x_{KS}$ and~$y \equiv y_{KS}$
by
\begin{equation}
x_{KS} + iy_{KS} = (r + ia) e^{i\phi} \sin\theta
\end{equation}
so that
\begin{eqnarray}
x_{KS}	& = & x_K - a \sin\theta \sin\phi				\\
y_{KS}	& = & y_K + a \sin\theta \cos\phi				%%%\\
\end{eqnarray}

In Kerr-Schild coordinates the 4-metric can be written
\begin{equation}
g_{ab} = \eta_{ab} + 2 H k_a k_b
\end{equation}
where
\begin{equation}
H = \frac{mr}{r^2 + a^2z^2/r^2}
\end{equation}
and where
\begin{equation}
k^a = - \frac{r(x\,dx + y\,dy) - a(x\,dy - y\,dx)}{r^2 + a^2}
      - \frac{z\,dz}{r}
      - dt
\end{equation}
is a null vector.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Schwarzschild-Lemaitre spacetime
	    (Schwarzschild black hole with cosmological constant}

\verb|Exact::exact_model = "Schwarzschild/Lemaitre"|%%%
is a metric proposed by Lemaitre in 1932 as a version of the
Schwarzschild solution in a universe with cosmological constant.
For a history of this metric and a good review see the chapter of
Jean Eisenstaedt, ``Lemaitre and the Schwarzschild solution'' in the
book ``The attraction of Gravitation: New Studies in the History of
General Relativity'', by J.~Earman, et.al.  Birk\"{a}user, 1993.
The line element is 
\begin{equation}
ds^2 = - \left( 1-\frac{2m}{r} - \frac{\Lambda}{3}r^2\right) \, dt^2
       + \left( 1-\frac{2m}{r} -\frac{\Lambda}{3}r^2 \right)^{-1} \, dr^2
       + r^2 \, d\theta^2
       + r^2 \sin(\theta)^2 \, d\phi^2
\end{equation}
Notice that for $\Lambda = 0$ this reduces to Schwarzschild spacetime
in the usual Schwarzschild coordinates.

The physics parameters are the black hole mass
$m = \verb|Schwarzschild_Lemaitre__mass|$, and the
cosmological constant $\Lambda = \verb|Schwarzschild_Lemaitre__Lambda|$.

The fictitious ``matter'' stress-energy tensor representing $\Lambda$ is
\begin{equation}
T_{ij}= - \frac{\Lambda}{8 \pi} g_{ij}
      = \left(
	\begin{array}{cccc}
	-\frac{1}{24}\frac{\Lambda A}{r\pi} & 0 & 0 & 0\\
	0 & \frac{3}{8}\frac{r\Lambda}{8\pi A }& 0 & 0\\
	0 & 0 &-\frac{1}{8}\frac{\Lambda r^2}{\pi }&  0\\
	0 & 0 & 0 & -\frac{1}{8}\frac{\Lambda r^2 \sin(\theta)^2}{\pi}
	\end{array}
	\right)
\end{equation}
where $A = (-3r +6m+\Lambda r^3)$.

Alas, this metric doesn't seem to give proper finite difference
convergence for $\Lambda \ne 0$.  It works fine for $\Lambda = 0$.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Majumdar-Papapetrou or Kastor-Traschen
	    Maximally-Charged (extreme Reissner-Nordstrom) multi-BH Solutions}

\verb|Exact::exact_model = "multi-BH"| specifies the Majumdar-Papapetrou
or Kastor-Traschen solution.  The file \verb|KTsol.tex| in the
documentation directory of this thorn gives more details/references
about these solutions.

The Majumdar-Papapetrou solution is a multi-black-hole static solution
to Einstein's equation, containing $N$ maximally charged ($Q=M$, \ie{}
extreme Reissner-Nordstrom) black holes.  The balance between
gravitational attraction and electrostatic repulsion among the
black holes causes each to maintain its position relative to the
others eternally, so the spacetime is static.  (The Majumdar-Papapetrou
solution somewhat resembles Brill-Lindquist initial data, but with the
black holes being charged.)  The line element is
\begin{equation}
ds^2=-\frac{1}{\Omega^2} dt^2+ \Omega^2(dx^2+dy^2+dz^2)
\end{equation}
where
\begin{eqnarray}
\Omega	&=& 1+\sum_{i=1}^N \frac{M_i}{r_i}				\\
r_i	&=& \sqrt{(x-x_i)^2+(y-y_i)^2+(z-z_i)^2}				%%%\\
\end{eqnarray}
where $M_i$ and $(x_i, y_i, z_i) \in \Re^3$ are the masses and
locations of the individual black holes.

The Kastor-Traschen solution is a cosmological generalization of the
Majumdar-Papapetrou solution, where there is a cosmological constant
and the black holes participate in an overall De~Sitter expansion or
contraction.  For $\Lambda = 0$ the Kastor-Traschen solution reduces
to the Majumdar-Papapetrou solution.

The Kastor-Traschen line element is
\begin{equation}
ds^2=-\frac{1}{\Omega^2} dt^2+a(t)^2 \Omega^2(dx^2+dy^2+dz^2)
\end{equation}
where
\begin{eqnarray}
\Omega	&=& 1+\sum_{i=1}^N {\frac{M_i}{a r_i}}				\\
a	&=& e^{Ht}							\\
H	&=& \pm \sqrt{\frac{\Lambda}{3}}				\\
r_i	&=& \sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2}			%%%\\
\end{eqnarray}
This solution represents ``incoming'' (``outgoing'') charged BHs
if $H < 0$ ($H > 0$).  We interpret $M_i$ as the mass of the
$i{\rm th}$ black hole, although we have neither an asymptotically
flat region nor event horizons available to convert this naive
interpretation into a rigorous one.

This thorn supports up to 4~black holes.  The physics parameters are
the number of black holes $N = \verb|multi_BH__nBH|$ and the Hubble constant
$H = \verb|multi_BH__Hubble|$, and then for each black hole $i = 1, \dots, N$,
the mass $m_i = \verb|multi_BH__mass|\,i$ and the $x$, $y$, and $z$ positions
$x_i = \verb|multi_BH__x|\,i$, $y_i = \verb|multi_BH__y|\,i$,
and $z_i = \verb|multi_BH__z|\,i$ respectively.

Note that this thorn does {\bf not} set $T_{\mu\nu}$.
{\bf FIXME: does treating this metric as vacuum still give a solution
to the Einstein equations?}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Alvi post-Newtonian 2BH spacetime (not fully implemented yet)}

\verb|Exact::exact_model = "Alvi"| specifies the Alvi post-Newtonian
binary black hole metric, as described in gr-qc/9912113.  This
uses different approxamintion methods to describe different regions
of a binary black hole system: Near the holes, one uses a distorted
Schwarzschild black hole metric, while in the region around them
(divided into a near zone and a wave zone) one uses a 1st~order
post-Newtonian approximation. There are discontinuities at the
boundaries between the zones. 

This model has physics parameters giving the masses of the two black
holes, $m_1 = \verb|Alvi__mass1|$ and $m_2 = \verb|Alvi__mass2|$, and
their spatial separation $b = \verb|Alvi__separation|$.

Unfortunately, this metric isn't fully implemented yet.
See Nina Jansen for details.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Thorne's ``Fake Binary'' Approximate Spacetime}

\verb|Exact::exact_model = "fakebinary"| specifies Thorne's ``fake binary''
approximate binary-black-hole spacetime, as described in gr-qc/9808024.
This is not an exact solution of the Einstein equations, but has
qualitative features designed to mimic those of an inspiralling
binary black hole spacetime.  The physics parameters are:
\begin{itemize}
\item	$m = \verb|Thorne_fakebinary__mass|$, the mass\\
	(FIXME: is this the mass of the whole spacetime,
	or of an individual BH?)
\item	$a_0 = \verb|Thorne_fakebinary__separation|$, the initial binary
	separation
\item	$\Omega_0 = \verb|Thorne_fakebinary__Omega0|$, the initial
	angular frequency of the binary orbit
\item	\verb|Thorne_fakebinary__retarded|, a Boolean parameter which
	controls whether or not to use a retarded time coordinate
\item	\verb|Thorne_fakebinary__atype|, a keyword parameter to
	select a constant (\verb|"constant"|)
	or quadrupole (\verb|"quadrupole"|) solution
\item	\verb|Thorne_fakebinary__smoothing|, a smoothing length for
	the Newtonian potential
\end{itemize}

There is also a numerical parameter \verb|Thorne_fakebinary__epsilon|
which is used to avoid division by zero if a grid point falls exactly
at either black hole's center; the default setting should be ok for
most purposes.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Cosmological Spacetimes}

The code for most of these models was written by
Mitica Vulcanov \verb|<vulcan@aei.mpg.de>|.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Lemaitre-type spacetime}

\verb|Exact::exact_model="Lemaitre"| specifies a Lemairre spacetime,
version of the Friedmann-Robertson-Walker model with flat space
(\ie{} $k=0$), possibly a cosmological constant, $\Lambda$, and a
linear dependence between the energy density $\epsilon$ and the
pressure, $p$, namely $p=\kappa \epsilon$. Thus the metric is the
Robertson-Walker metric
%%(see section~\ref{AEIThorns/Exact/sect-Robertson-Walker})
with $k =0$ and (see gr-qc/0110030, astro-ph/9910093 and references
cited here),
\begin{equation}
R(t) = R_0 \left[ \cosh \left(\frac{\sqrt{3\Lambda}}{2}(\kappa+1) t \right)
		  +
		  \sqrt{1+\frac{8\pi G\,\epsilon_{0}}{\Lambda}}
		  \sinh \left( \frac{\sqrt{3\Lambda}}{2}(\kappa+1) t \right)
		  \right]^{2/3(\kappa+1)}   
\end{equation}
where $R_0$ is the scale factor of the universe (``radius'') at $t=0$;
the density of energy reads
\begin{equation}\label{dens}
\epsilon(t)=\epsilon_0\,a(t)^{-3(\kappa+1)}\,.
\end{equation}
The stress-enegy tensor is one of a perfect fluid,
\begin{equation}
T_{\mu}^{\nu}=(\epsilon+p)u^{\nu}u_{\mu}-p \delta_{\mu}^{\nu}\,, 
\end{equation}
which depends on the covariant four-velocity  $u^{\mu}=dx^{\mu}/ds$
(remember $p=\kappa \epsilon$).

The physics parameters are
the equation of state parameter $\kappa = \verb|Lemaitre__kappa|$,
the cosmological constant $\Lambda = \verb|Lemaitre__Lambda|$,
the energy density of the universe at time $t = 0$,
$\epsilon_0 = \verb|Lemaitre__epsilon0|$,
and the scale factor (radius) of the universe at time $t = 0$,
$R_0 = \verb|Lemaitre__R0|$.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%%\subsection{Robertson-Walker spacetime}
%%\label{AEIThorns/Exact/sect-Robertson-Walker}
%%
%%\verb|Exact::exact_model = "Robertson-Walker"| specifies a 
%%Robertson-Walker spacetime  as described in Hawking and Ellis section~5.3
%%and MTW section~27.11 (see also gr-qc/0110031),
%%transformed to the usual Cactus $(t,x,y,z)$ Cartesian-topology coordinates.
%%The general Robertson-Walker line element in $(t,r,\theta,\phi)$ coordinates
%%is
%%\begin{equation}
%%ds^2 = -dt^2 + R(t)^2 \left[ \frac{dr^2}{1 - kr^2} + r^2 \, d\Omega^2 \right]
%%\end{equation}
%%
%%The physics parameters are
%%the scale factor $R(t)$ at time $t = 0$, $R_0 = \verb|Robertson_Walker__R0|$,
%%a parameter $\rho = \verb|Robertson_Walker__rho|$ which is related to
%%the actual value of the matter density in the Universe,
%%the geometry curvature parameter $k = \verb|Robertson_Walker__k|$,
%%which can take (only) the values $k=-1$, $0$, or $+1$, corresponding
%%to open, flat, or closed 3-geometries, and finally
%%the Boolean parameter \verb|Robertson_Walker__pressure| to select
%%whether or not to include pressure terms in the model.  If pressure
%%is included we have a radiation-dominated universe $p = \frac{1}{3} \rho$;
%%if pressure is not included we have a matter-dominated universe $p=0$.
%%
%%For a good simulation it is necessary to give good numerical values
%%for the above parameters (they are very strictly related, through the
%%Einstein equations).  See gr-qc/0110031 for some examples.
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{de~Sitter spacetime}

\verb|Exact::exact_model = "de Sitter"| specifies an Einstein-de~Sitter 
spacetime (a zero-pressure spatially-flat Robertson-Walker spacetime),
as described in Hawking and Ellis section~5.3 and MTW section~27.11
(see also gr-qc/0110031 for some tests of Cactus with this model).
The only physics parameter is the multiplicative scale
factor $a = \verb|de_Sitter__scale|$.

The Einstein-De~Sitter spacetime is the special case
$R(t) = \sqrt{a}\,t^{2/3}$, $k = 0$ of the more general Robertson-Walker
spacetime, so the line element in $(t,r,\theta,\phi)$ coordinates is
\begin{equation}
ds^2 = -dt^2 + a t^{4/3} \left[ dr^2 + r^2 \, d\Omega^2 \right]
\end{equation}
The only non-vanishing component of the stress-energy tensor is
\begin{equation}
T_{tt} = \frac{1}{6 \pi t^2}
\end{equation}
This is properly set up by this thorn. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{de~Sitter spacetime with cosmological constant}

\verb|Exact::exact_model="de Sitter+Lambda"| specifies an Einstein-de~Sitter
spacetime with a cosmological constant, with the line element
\begin{equation}
ds^2 = - dt^2 + e^{2/3\sqrt{3\Lambda}t} \left ( dx^2 + dy^2 + dz^2 \right) 
\end{equation}
where $\Lambda$ is the cosmological constant.
FIXME: how is $\Lambda$ determined?

The only physics parameter is the multiplicative scale
factor $a = \verb|de_Sitter_Lambda__scale|$.

The fictitious ``matter'' stress-energy tensor representing $\Lambda$ is
\begin{equation}
T_{ij}= - \frac{\Lambda}{8 \pi} g_{ij} = \left ( \begin{array}{cccc}
\frac{1}{8}\frac{\Lambda}{\pi} & 0 & 0 & 0\\
0 & -\frac{1}{8}\frac{\Lambda  e^{2/3 \sqrt{3\Lambda}t}}{\pi }& 0 & 0\\
0 & 0 &-\frac{1}{8}\frac{\Lambda e^{2/3 \sqrt{3\Lambda}t}}{\pi }&  0\\
0 & 0 & 0 & -\frac{1}{8}\frac{\Lambda  e^{2/3 
\sqrt{3\Lambda}t}}{\pi}\end{array}\right ) \, 
\end{equation}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{anti-de~Sitter spacetime with cosmological constant}

\verb|Exact::exact_model="anti-de Sitter+Lambda"| specifies an
anti-de~Sitter spacetime with a cosmological constant, with the line
element
\begin{equation}
ds^2 =  dx^2 + e^{2/3\sqrt{-3\Lambda}t} \left ( -dt^2 + dy^2 + dz^2 \right)  
\end{equation}
FIXME: how is $\Lambda$ determined?

The only physics parameter is the multiplicative scale
factor $a = \verb|anti_de_Sitter_Lambda__scale|$.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Approximate Bianchi type~I spacetime}

\verb|Exact::exact_model = "Bianchi I"| specifies an approximation to
a Bianchi type~I spacetime, setting the spacetime metric components
as harmonic functions. Thus this is not a proper solution of Einstein
equations.  The only physics parameter is the multiplicative scale
factor $a = \verb|Bianchi_I__scale|$.

{\bf This solution doesn't work properly yet.  See Mitica Vulcanov for
further information.}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{G\"{o}del spacetime}

\verb|Exact::exact_model = "Goedel"| specifies a G\"{o}del spacetime,
as described in Hawking and Ellis section~5.7.  The only physics parameter
is the multiplicative scale factor $a = \verb|Goedel__scale|$.

At present this thorn doesn't set up the stress-energy tensor;
you have to do this ``by hand''.

{\bf This solution doesn't work properly yet.  See Mitica Vulcanov for
further information.}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Bertotti spacetime}

\verb|Exact::exact_model = "Bertotti"| specifies a Bertotti spacetime.
This a spacetime metric with cosmological constant (see Gravitation
and Geometry by Rindler and Trautman, Bibliopolis, Napoli, 1987,
page~309), with the line element
\begin{equation}
ds^2 = -e^{2\sqrt{-\Lambda}x}dt^2 +dx^2 +  e^{2\sqrt{-\Lambda}z}du^2 + dz^2
\end{equation}
The only physics parameter is the cosmological constant
$\Lambda = \verb|Bertotti__Lambda|$.

The fictitious ``matter'' stress-energy tensor representing $\Lambda$ is
\begin{equation}
T_{ij}= - \frac{\Lambda}{8 \pi} g_{ij} = \left ( \begin{array}{cccc}
\frac{1}{8}\frac{\Lambda e^{2\sqrt{-\Lambda} x}}{\pi} & 0 & 0 & 0\\
0 & -\frac{1}{8}\frac{\Lambda}{\pi }& 0 & 0\\
0 & 0 &-\frac{1}{8}\frac{\Lambda e^{2\sqrt{-\Lambda}z}}{\pi }&  0\\
0 & 0 & 0 & -\frac{1}{8}\frac{\Lambda}{\pi}\end{array}\right ) \, 
\end{equation}

Mitica Vulcanov says:
This metric is not working properly. We suspect that it is not a solution
of the vacuum Einstein equations with cosmological constant, thus
somebody else can try to calculate properly the above components
of the $T_{ij}$ - ask Mitica D.N. Vulcanov for more details.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Kasner-like spacetime}

\verb|Exact::exact_model="Kasner-like"| is the so-called
``Kasner-like'' metric, as described in L.~Pimentel,
Int.\ Journ.\ of Theor.\ Physics, {\bf 32},  No.~6, p.~979, (1993)
and the references cited here.  (See also MTW section~30.2,
gr-qc/0110031, and S.~Gotlober \etal{},
``Early Evolution of the Universe and Formation [of] Structure'',
Akad.\ Verlag, 1990.)
The Kasner-like line element is
\begin{equation}
ds^2 = -dt^2 + t^{2q} (dx^2 +dy^2) + t^{2 - 4q}dz^2
\end{equation}
Here we have a stress-energy tensor which has all off-diagonal components 
vanishing:
\begin{eqnarray}
T_{ij} = \left(
	 \begin{array}{cccc}
	 q\frac{(2-3 q)}{8 \pi t^2} & 0 & 0 & 0 \\
	 0 & q\frac{(2-3 q)t^{2q}}{8 \pi t^2} & 0 & 0\\
	 0 & 0 & q\frac{(2-3 q)t^{2q}}{8 \pi t^2} & 0\\
	 0 & 0 & 0 & q\frac{(2-3q)t^{2-4q}}{8 \pi t^2}%%%\\
	 \end{array}
	 \right)
\end{eqnarray}

There is one parameter $q = \verb|Kasner_like__q|$.

This metric forms a one parameter family of solutions of Einstein's
equations with a perfect stiff fluid. The parameter $q$ is related to
the energy density, as is obvious from the last equation. The
qualitative features of the expansion depend on $q$ in the following
way: for $q > 1/2$ the universe expands from a ``cigar'' singularity;
for $q = 1/2$, the universe expands purely transversally from an
initial ``barrel'' singularity; for $0 < q < 1/2$ the initial
singularity is ``point-like'' and if $q \leq 0$ we have a ``pancake''
singularity. The case $q=1/3$ corresponds to an isotropic universe
with a stiff fluid; the case $q=0$ is a region of Minkowski spacetime
in non-Cartesian coordinates. This family of metrics is ``Kasner-like''
in the sense that the sum of the exponents is equal to one, but the
sum of the squares is not equal to one except in the cases when $q=0$
or $q=2/3$, when we have the vacuum case.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{axisymmetric Kasner spacetime}

\verb|Exact::exact_model="Kasner-axisymmetric"| specifies an
axisymmetric Kasner spacetime, as described in
S.~D.~Hern, {\it Numerical Relativity and Inhomogeneous  Cosmologies\/},
PhD thesis, Cambridge (gr-qc/0004036), and 
S.~D.~Hern, J.~M.~Stewart, Class.\ Quantum Grav, {\bf 15}, 1581, (1998).
The line element is
\begin{equation}
ds^2 = -\frac{dt^2}{\sqrt{t}} + \frac{dx^2}{\sqrt{t}} + t dy^2
+ t dz^2
\end{equation}
This is an exact solution of the vacuum Einstein equations, explicitly
homogeneous, and features a cosmological singularity at $t=0$.

There are no parameters for this model.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{generalized Kasner spacetime}
\verb|Exact::exact_model="Kasner-generalized"| specifies a
generalized Kasner spacetime, as described in MTW section~30.2,
where the line element is
\begin{equation}
ds^2 = -dt^2 +t^{2p_1}dx^2 + t^{2p_2}dy^2 + t^{2p_3}dz^2
\end{equation}
The Kasner parameters $p_1$, $p_2$ and $p_3$ must satisfy the relations
$p_1+p_2+p_3 = 1$ and
$p_1^2+p_2^2+p_3^2 = 1$.
Restricting ourselves only to two parameters, $p_1$ and $p_2$,
we have the following stress-energy tensor:
\begin{equation}
T_{ij} = \left(
	 \begin{array}{cccc}
	 \frac{A}{8\pi t^2} & 0 & 0 & 0\\
	 0 & \frac{A t^{2p_1-2}}{8 \pi} & 0 & 0\\
	 0 & 0 & \frac{A t^{2p_2-2}}{8\pi} & 0 \\
	 0 & 0 & 0 & \frac{A t^{-2p_1-2p_2}}{8 \pi}%%%
	 \end{array}
	 \right)
\end{equation}
where $A = p_1 - p_1^2 +p_2 - p_2^2 - p_1 p_2$ (note the use of the above
first condition on the parameters, thus we have $p_3 = 1-p_1-p_2$).  

The parameters are $p_1 = \verb|Kasner_generalized__p1|$
and $p_2 = \verb|Kasner_generalized__p2|$.

Mitica Vulcanov has done several simulations with various Kasner
spacetimes, see gr-qc/0110031. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Gowdy-wave Spacetime}

\verb|Exact::exact_model = "Gowdy-wave"| specifies a Gowdy spacetime,
which gives a polarized wave in an expanding universe.  See
K.~New, K.~Watt, C.~W.~Misner, and J.~Centrella,
``Stable 3-level leapfrog integration in numerical relativity'',
PRD 58, 064022.

There is only a single parameter, the wave amplitude
\verb|Gowdy_wave__amplitude|.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Milne Spacetime for Pre-Big-Bang Cosmology}

\verb|Exact::exact_model = "Milne"| specifies a Milne spacetime,
as described by gr-qc/9802001 (see in particular reference~14, which
in turn points to Zeldovich and Novikov volume~2 section~2.4):
\begin{equation}
g_{ab} = \left[
	 \begin{array}{cccc}
	 -1	& 0		& 0		& 0		\\
	 0	& V(1+y^2+z^2)	& -Vxy		& -Vxz		\\
	 0	& -Vxy		& V(1+x^2+z^2)	& -Vyz		\\
	 0	& -Vxz		& -Vyz		& V(1+x^2+y^2)	%%%\\
	 \end{array}
	 \right]
\end{equation}
where
\begin{equation}
V = \frac{t^2}{1 + x^2 + y^2 + z^2}
\end{equation}

{\bf The $g_{ab}$ given here is indeed what the code computes, but
alas noone seems to know whether this is indeed a Milne  spacetime.}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Miscellaneous Spacetimes}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Boost Rotation Symmetric Spacetime}

\verb|Exact::exactmodel = "starSchwarz"| specifies a boost-rotation
symmetric spacetime, as described in Jiri Bicak and Bernd Schmidt,
"Asymptotically flat radiative space-times with boost-rotation symmetry",
Physical Review~D {\bf 40}, 1827 (1989).
Pravda and Pravdov\'{a}, gr-qc/0003067, give a
general review of boost-rotation symmetric spacetimes.  

FIXME: the parameters are \dots

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Schwarzschild (Constant Density) Star}

\verb|Exact::exact_model = "constant density star"| specifies a
constant-density ``Schwarzschild'' star, as described in MTW~Box 23.2.
The stress-energy tensor is also properly set up.

The parameters are the star's mass \verb|constant_density_star__mass|
and its radius \verb|constant_density_star__radius|.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Non-Einstein Bowl (``Bag of Gold'') Spacetime}

\verb|Exact::exact_model = "bowl"| specifies a ``bag of Gold'' metric,
as described in gr-qc/9809004.  This is useful for testing purposes,
but isn't a solution of the Einstein equations.
The line element in $(t,r,\theta,\phi)$ coordinates is
\begin{equation}
ds^2 = -dt^2 + dr^2 + R^2(r) \, d\Omega^2
\end{equation}

We choose $R(r)$ such that $\displaystyle \lim_{r \ll 1} R(r) = r$
and $\displaystyle \lim_{r \gg 1} R(r) = r$, so we have a flat 3-metric
(and hence 4-metric too) for very small~$r$ and for very large~$r$.
For intermediate values of~$r$, we take $0 < R(r) < r$; this deficit
in areal radius produces the ``bag of gold'' geometry.

The physics parameters are
\begin{itemize}
\item	$a = \verb|bowl__strength|$, the deformation strength
\item	$c = \verb|bowl__center|$, the deformation center
\item	\verb|bowl__shape| is a keyword parameter to specify
	the type of function to use to specify the bowl (see below)
\item	$\sigma = \verb|bowl__sigma|$, the deformation width
	(\Nb{} for \verb|bowl__shape = "Gaussian"| the function
	is actually $\exp \big( \!-(x-c)^2/\sigma^2 \big)$, not
	$\exp \big( -\half(x-c)^2/\sigma^2 \big)$.  Thus for
	this case $\sigma$ is actually $\sqrt{2}$ times the
	standard deviation of the Gaussian.)
\item	\verb|bowl__x_scale|, \verb|bowl__y_scale|, and \verb|bowl__z_scale|,
	which set the $x$, $y,$ and $z$ scales of the bowl
	(\ie{} all the computations actually use $x/\verb|bowl__x_scale|$,
	$y/\verb|bowl__y_scale|$, and $z/\verb|bowl__z_scale|$)
\item	\verb|bowl__evolve| is a Boolean parameter which controls
	whether the bowl should be time-dependent; the remaining
	parameters are only used if \verb|bowl__evolve| is true
\item	$t_0 = \verb|bowl__t0|$, the center of the Fermi step in time
\item	$\sigma_t = \verb|bowl__sigma_t|$, the width of the Fermi step in time
\end{itemize}

The size of the deviation from a flat geometry is controled by the
parameter $a = \verb|bowl__strength|$.  If $a = 0$, we are in flat spacetime.
The width of the curved region is controled by $\sigma = \verb|bowl__sigma|$,
and the place where the curvature becomes significant (the center of
the deformation) is controlled by $c = \verb|bowl__center|$.

In detail, we choose
\begin{equation}
R(r) = r - A f(r) g(r)
\end{equation}
Here $A = a$ if \verb|bowl_evolve = "false"|, but is multiplied by
a Fermi factor
\begin{equation}
A = \frac{a}{1 + \exp(-\sigma_t(t-t_0))}
\end{equation}
if \verb|bowl_evolve = "true"|.  For this latter case we have
flat spacetime far in the past, and a static bowl far in the future.
$f(r)$ is either a Gaussian or a Fermi function,
\begin{equation}
f(r) = \left\{
       \begin{array}{ll}
       \displaystyle
       \exp \big( (r-c)^2/\sigma^2 \big)
			& \hbox{if {\tt bowl\_type = "Gaussian"}}	\\[1ex]
       \displaystyle
       \frac{1}{1 + \exp(-\sigma(r-c))}
			& \hbox{if {\tt bowl\_type = "Fermi"}}		%%%\\
       \end{array}
       \right.
\end{equation}
$g(r) = 1 - \sech 4r$ is a fixup factor to ensure that
$\displaystyle \lim_{r \to 0} R(r) = r$.

The three paramters \verb|bowl__x_scale|, \verb|bowl__y_scale|, and
\verb|bowl__z_scale| scale the $(x,y,z)$ axes respectively.  Their
default values are all~1.  These parameters are useful to hide the
spherical symmetry of the metric.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Acknowledgments}

The original code, including the boost-rotation symmetric metric
and the slice evolver, was written by Carsten Gundlach and Miguel Alcubierre.
Many different people have contributed exact solutions.
The Schwarzschild/Lemaitre solution
and most (all?) of the cosmological solutions
were written by Mitica Vulcanov.
The Minkowski/gauge wave model was written by Michael Koppitz.
In May-June 2002 Jonathan Thornburg cleaned up a lot of the code,
systematized the spacetime/coordinate and parameter names, and
wrote most of this documentation (based on the comments in the code,
some reverse-engineering, and querying various people about how the
code works.)
The description of the Kastor-Traschen maximally charged multi-BH
model is adapted from the file \verb|KTsol.tex| in this same directory,
by Hisa-aki Shinkai.
The Gowdy model was written by Denis Pollney.
The \verb|ADMBase::evolution_method = "exact"| code was written
by Peter Diener.
The ``boost any vacuum solution'' code was written by Jonathan Thornburg.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Do not delete next line
% END CACTUS THORNGUIDE

\end{document}