aboutsummaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorjthorn <jthorn@e296648e-0e4f-0410-bd07-d597d9acff87>2002-05-11 17:25:07 +0000
committerjthorn <jthorn@e296648e-0e4f-0410-bd07-d597d9acff87>2002-05-11 17:25:07 +0000
commit10d2a7ffaa134a0089d9063b39db81b8c40890ab (patch)
tree6df789d965a6d23e2f76fea4cee6cae37f34e3b6 /doc
parentd3c7d54f230e153d5d8bd5fad4c97caea9d7dbc1 (diff)
document some more of Mitica Vulcanov's cosmological spacetimes
git-svn-id: http://svn.einsteintoolkit.org/cactus/EinsteinInitialData/Exact/trunk@61 e296648e-0e4f-0410-bd07-d597d9acff87
Diffstat (limited to 'doc')
-rw-r--r--doc/documentation.tex253
1 files changed, 196 insertions, 57 deletions
diff --git a/doc/documentation.tex b/doc/documentation.tex
index 784e1bf..c20cad9 100644
--- a/doc/documentation.tex
+++ b/doc/documentation.tex
@@ -10,9 +10,11 @@
\def\nb{n.b.\hbox{}}
\def\Nb{N.b.\hbox{}}
-\def\defn#1{{\bf #1}}
+\def\tfrac#1#2{{\textstyle \frac{#1}{#2}}}
+\def\dfrac#1#2{{\displaystyle \frac{#1}{#2}}}
\def\half{\frac{1}{2}}
+\def\third{\frac{1}{3}}
\def\new{\text{new}}
\def\G{{\sf G}}
@@ -81,19 +83,19 @@ parameter:
\end{description}
\item[Cosmological spacetimes]\mbox{}\\[-\baselineskip]
\begin{description}
- \item[{\tt "BianchiI"}]
- Bianchi type~I spacetime
\item[{\tt "Rob-Wal"}]
- Robertson-Walker cosmology
+ Pure-radiation Robertson-Walker cosmology
+ \item[{\tt "DeSitter"}]
+ Einstein-De~Sitter spacetime
\item[{\tt "Godel"}]
G\"{o}del spacetime%%%
\footnote{%%%
Note that the parameter is {\em not\/} "Goedel"!
}%%%
- \item[{\tt "DeSitter"}]
- Einstein-De~Sitter spacetime
+ \item[{\tt "BianchiI"}]
+ Bianchi type~I spacetime
\item[{\tt "Kasner"}]
- Kasner like spacetime
+ Kasner-like spacetime
\item[{\tt "Milne"}]
Milne spacetime for pre-big-bang cosmology
\end{description}
@@ -128,12 +130,9 @@ types of coordinates:
\verb|Exact::exactmodel = "Minkowski"| specifies Minkowski spacetime
in the usual Minkowski coordinates:
\begin{equation}
-g_{ab} = \left[
+g_{ab} = \diag \left[
\begin{array}{cccc}
- -1 & 0 & 0 & 0 \\
- 0 & 1 & 0 & 0 \\
- 0 & 0 & 1 & 0 \\
- 0 & 0 & 0 & 1 %%%\\
+ -1 & 1 & 1 & 1 %%%\\
\end{array}
\right]
\end{equation}
@@ -186,7 +185,38 @@ types of coordinates:
\subsection{Schwarzschild spacetime with flat spatial metric}
\verb|Exact::exactmodel = "flatSchwarz"| specifies Schwarzschild spacetime
-in FIXME coordinates. These have $g_{ij}$ a {\em flat\/} metric.
+in coordinates chosen so the spatial metric is flat, then
+transformed to the usual Cactus $(t,x,y,z)$ Cartesian-topology
+coordinates. The only physics parameter is
+\begin{equation}
+m = \text{\tt KerrSchild\_m}
+\end{equation}
+(note the name!).
+There is also a numerical parameter \verb|KerrSchild_eps| (again note
+the name!) which is used internally in the code; you can probably ignore
+it for most purposes.
+
+In the usual Cactus $(t,x,y,z)$ Cartesian-topology coordinates, the
+4-metric is
+\begin{equation}
+g_{ab} = \left[
+ \begin{array}{cccc}
+ -1 + \frac{2m}{r}
+ & \sqrt{\frac{2m}{r}} \frac{x}{r}
+ & \sqrt{\frac{2m}{r}} \frac{y}{r}
+ & \sqrt{\frac{2m}{r}} \frac{z}{r}
+ \\
+ \sqrt{\frac{2m}{r}} \frac{x}{r}
+ & 1 & 0 & 0 \\
+ \sqrt{\frac{2m}{r}} \frac{y}{r}
+ & 0 & 1 & 0 \\
+ \sqrt{\frac{2m}{r}} \frac{z}{r}
+ & 0 & 0 & 1 %%%\\
+ \end{array}
+ \right]
+\end{equation}
+
+FIXME: get more info from Miguel
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -209,38 +239,13 @@ areal radial coordinate, and $t+r$ is an ingoing null coordinate),
but transformed to the usual Cactus $(t,x,y,z)$ Cartesian-topology
coordinates. The only physics parameter is
\begin{equation}
-m = \verb|KerrSchild_m|
+m = \text{\tt KerrSchild\_m}
\end{equation}
-(note the slightly counterintuitive name!)
+(note the name!).
There is also a numerical parameter \verb|KerrSchild_eps| (again note
the name!) which is used internally in the code; you can probably ignore
it for most purposes.
-In the Cactus $(t,x,y,z)$ Cartesian-topology coordinates the 4-metric is
-\begin{equation}
-g_{ab} = \left[
- \begin{array}{cccc}
- - \left( 1 - \frac{2m}{r} \right)
- & \frac{2m}{r} \frac{x}{r}
- & \frac{2m}{r} \frac{y}{r}
- & \frac{2m}{r} \frac{z}{r} \\
- \frac{2m}{r} \frac{x}{r}
- & 1 + \frac{2m}{r} \frac{x^2}{r^2}
- & \frac{2m}{r} \frac{xy}{r^2}
- & \frac{2m}{r} \frac{xz}{r^2} \\
- \frac{2m}{r} \frac{y}{r}
- & \frac{2m}{r} \frac{xy}{r^2}
- & 1 + \frac{2m}{r} \frac{y^2}{r^2}
- & \frac{2m}{r} \frac{yz}{r^2} \\
- \frac{2m}{r} \frac{z}{r}
- & \frac{2m}{r} \frac{xz}{r^2}
- & \frac{2m}{r} \frac{yz}{r^2}
- & 1 + \frac{2m}{r} \frac{z^2}{r^2}
- %%%\\
- \end{array}
- \right]
-\end{equation}
-
In the usual polar spherical $(t,r,\theta,\phi)$ coordinates, the 4-metric
and ADM variables are
\begin{align}
@@ -287,6 +292,31 @@ K_{ij} & = \diag
coordinates are tabulated in appendix~2 of Jonathan Thornburg's Ph.D
thesis, \verb|http://www.aei.mpg.de/~jthorn/phd/html/phd.html|.)
+In the Cactus $(t,x,y,z)$ Cartesian-topology coordinates the 4-metric is
+\begin{equation}
+g_{ab} = \left[
+ \begin{array}{cccc}
+ - \left( 1 - \frac{2m}{r} \right)
+ & \frac{2m}{r} \frac{x}{r}
+ & \frac{2m}{r} \frac{y}{r}
+ & \frac{2m}{r} \frac{z}{r} \\
+ \frac{2m}{r} \frac{x}{r}
+ & 1 + \frac{2m}{r} \frac{x^2}{r^2}
+ & \frac{2m}{r} \frac{xy}{r^2}
+ & \frac{2m}{r} \frac{xz}{r^2} \\
+ \frac{2m}{r} \frac{y}{r}
+ & \frac{2m}{r} \frac{xy}{r^2}
+ & 1 + \frac{2m}{r} \frac{y^2}{r^2}
+ & \frac{2m}{r} \frac{yz}{r^2} \\
+ \frac{2m}{r} \frac{z}{r}
+ & \frac{2m}{r} \frac{xz}{r^2}
+ & \frac{2m}{r} \frac{yz}{r^2}
+ & 1 + \frac{2m}{r} \frac{z^2}{r^2}
+ %%%\\
+ \end{array}
+ \right]
+\end{equation}
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Kerr-Schild form of boosted rotating black hole}
@@ -322,7 +352,7 @@ g_{ab} = \eta_{ab} + 2 H k_a k_b
\end{equation}
where
\begin{equation}
-H = \frac{Mr}{r^2 + a^2z^2/r^2}
+H = \frac{mr}{r^2 + a^2z^2/r^2}
\end{equation}
and where
\begin{equation}
@@ -337,7 +367,9 @@ is a null vector.
\subsection{Kerr spacetime in cartesian coordinates}
\verb|Exact::exactmodel = "Kerr"| specifies Kerr spacetime in
-FIXME-WHAT-IS-TIME-SLICING coordinates.
+FIXME coordinates.
+
+FIXME: more detail needed from Mitica
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -353,7 +385,7 @@ m & = \text{\tt fakebinary\_m} \\
a_0 & = \text{\tt fakebinary\_a0} \\
\Omega_0& = \text{\tt fakebinary\_Omega0} %%%\\
\end{align}
-as well as the algorithm parameters \verb|fakebinary_atype|,
+There are also algorithm parameters \verb|fakebinary_atype|,
\verb|fakebinary_retarded|, and \verb|fakebinary_bround|.
There is also a numerical parameter \verb|fakebinary_eps| which is used
internally in the code; you can probably ignore it for most purposes.
@@ -362,54 +394,161 @@ internally in the code; you can probably ignore it for most purposes.
\subsection{Maximally charged multi BH solutions}
+FIXME: get more info from Hisa-aki
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Cosmological Spacetimes}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\subsection{Bianchi type~I spacetime}
+\subsection{Pure-Radiation Robertson-Walker cosmology}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\verb|Exact::exactmodel = "Rob-Wal"| specifies a pure-radiation
+Robertson-Walker spacetie ($p = \third \rho$, $k=0$), as described in
+Hawking and Ellis section~5.3 and MTW section~27.11 (see also gr-qc/0110031),
+transformed to the usual Cactus $(t,x,y,z)$ Cartesian-topology coordinates.
+The only physics parameter is
+\begin{equation}
+a = \text{\tt Desitt\_a}
+\end{equation}
+(note the name!).
-\subsection{Robertson-Walker cosmology (near $t=0$,pure radiation case)}
+The general Robertson-Walker line element in $(t,r,\theta,\phi)$ coordinates
+is
+\begin{equation}
+ds^2 = -dt^2 + R(t)^2 \left[ \frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right]
+\end{equation}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+For the special case here, $R(t) = \sqrt{at}$, so
+\begin{equation}
+ds^2 = -dt^2 + a t \left[ dr^2 + r^2 d\Omega^2 \right]
+\end{equation}
-\subsection{G\"{o}del spacetime}
+At present this thorn doesn't set up the stress-energy tensor;
+you have to do this ``by hand''.
+
+FIXME: more detail needed from Mitica
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{De~Sitter spacetime}
-\verb|Exact::exactmodel = "DeSitter"| specifies Einstein-De~Sitter
-spacetime, as described in Hawking and Ellis section~5.3 and MTW
-section~27.11, transformed to the usual Cactus $(t,x,y,z)$
+\verb|Exact::exactmodel = "DeSitter"| specifies an Einstein-De~Sitter
+spacetime (a zero-pressure spatially-flat Robertson-Walker spacetime),
+as described in Hawking and Ellis section~5.3 and MTW section~27.11
+(see also gr-qc/0110031), transformed to the usual Cactus $(t,x,y,z)$
Cartesian-topology coordinates. The only physics parameter is
\begin{equation}
-a = \verb|Desitt_a|
+a = \text{\tt Desitt\_a}
\end{equation}
-The Einstein-De~Sitter line element in $(t,r,\theta,\phi)$ coordinates
-is given by
+The Einstein-De~Sitter spacetime is the special case
+$R(t) = \sqrt{a}\,t^{2/3}$, $k = 0$ of the more general Robertson-Walker
+spacetime, so the line element in $(t,r,\theta,\phi)$ coordinates is
\begin{equation}
ds^2 = -dt^2 + a t^{4/3} \left[ dr^2 + r^2 d\Omega^2 \right]
\end{equation}
-and is a special case (flat spatial geometry, no pressure) of the more
-general Robertson-Walker metric. The only non-vanishing component of
+The only non-vanishing component of
the stress-energy tensor is
\begin{equation}
T_{tt} = \frac{1}{6 \pi t^2}
\end{equation}
+However, at present this thorn doesn't set up the stress-energy tensor;
+you have to do this ``by hand''.
+
+FIXME: more detail needed from Mitica
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\subsection{G\"{o}del spacetime}
+
+\verb|Exact::exactmodel = "Godel"| (sic) specifies a G\"{o}del
+spacetime, as described in Hawking and Ellis section~5.7, transformed
+to the usual Cactus $(t,x,y,z)$ Cartesian-topology coordinates. The
+only physics parameter is
+\begin{equation}
+a = \text{\tt Godel\_a}
+\end{equation}
+(note the name!).
+
+At present this thorn doesn't set up the stress-energy tensor;
+you have to do this ``by hand''.
+
+FIXME: more detail needed from Mitica
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\subsection{Bianchi type~I spacetime}
+
+\verb|Exact::exactmodel = "BianchiI"| specifies an approximation to
+a Bianchi type~I spacetime.
+
+FIXME: more detail needed from Mitica
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\subsection{Kasner like spacetime}
+\subsection{Kasner-like spacetime}
+
+\verb|Exact::exactmodel = "Kasner"| specifies a Kasner-like spacetime,
+as described in gr-qc/0110031, and in more detail in
+L. Pimentel,
+International Journal of Theoretical Physics {\bf 32}(6) [1993], 979,
+and
+S. Gotlober, \etal{},
+``Early Evolution of the Universe and Formation [of] Structure'',
+Akad. Verlag, 1990.
+There is one physics parameter,
+\begin{equation}
+q = \text{\tt Kasner\_q} %%%\\
+\end{equation}
+
+In the usual Cactus $(t,x,y,z)$ Cartesian-topology coordinates, the
+4-metric is
+\begin{equation}
+g_{ab} = \diag \left[
+ \begin{array}{cccc}
+ -1 & t^{2q} & t^{2q} & t^{2-4q} %%%\\
+ \end{array}
+ \right]
+\end{equation}
+and the stress-energy tensor is
+\begin{equation}
+T_{ab} = \diag \left[
+ \begin{array}{cccc}
+ q \dfrac{2 - 3q}{8\pi t^2}
+ & q \dfrac{(2 - 3q) t^{2q}}{8\pi t^2}
+ & q \dfrac{(2 - 3q) t^{2q}}{8\pi t^2}
+ & q \dfrac{(2 - 3q) t^{2-4q}}{8\pi t^2}
+ %%%\\
+ \end{array}
+ \right]
+\end{equation}
+
+FIXME: verify this with Mitica
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Milne spacetime for pre-big-bang cosmology}
+\verb|Exact::exactmodel = "Milne"| specifies a De~Milne spacetime,
+\begin{equation}
+g_{ab} = \left[
+ \begin{array}{cccc}
+ -1 & 0 & 0 & 0 \\
+ 0 & V(1+y^2+z^2) & -Vxy & -Vxz \\
+ 0 & -Vxy & V(1+x^2+z^2) & -Vyz \\
+ 0 & -Vxz & -Vyz & V(1+x^2+y^2) %%%\\
+ \end{array}
+ \right]
+\end{equation}
+where
+\begin{equation}
+V = \frac{t^2}{1 + x^2 + y^2 + z^2}
+\end{equation}
+
+FIXME: more detail needed from Mitica
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Miscellaneous Spacetimes}