aboutsummaryrefslogtreecommitdiff
path: root/src/sor_confmetric.c
blob: b258c91cc75634a274a17e9ea227f150bf8b9a3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
 /*@@
   @file      sor_confmetric.c
   @date      Tue Sep 26 11:29:18 2000
   @author    Gerd Lanfermann
   @desc 
     Provides sor solver engine routines
   @enddesc 
 @@*/


#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "CactusBase/Boundary/src/Boundary.h"
#include "CactusBase/CartGrid3D/src/Symmetry.h"
#include "CactusElliptic/EllBase/src/Ell_DBstructure.h"


#define SQR(a) ((a)*(a))

 /*@@
   @routine    sor_confmetric
   @date       Tue Sep 26 11:28:08 2000
   @author     Joan Masso, Paul Walker, Gerd Lanfermann
   @desc 
   This is a standalone sor solver engine, 
   called by the wrapper functions
   @enddesc 
   @calls     
   @calledby   
   @history 
 
   @endhistory 

@@*/



void sor_confmetric_3d(cGH *GH, int *MetricPsiI, int conformal,
		       int FieldIndex, int MIndex, int NIndex,
		       CCTK_REAL *AbsTol, CCTK_REAL *RelTol)
{
  DECLARE_CCTK_PARAMETERS  

  /* The pointer to the metric fields */
  CCTK_REAL *gxx =NULL, *gxy =NULL; 
  CCTK_REAL *gxz =NULL, *gyy =NULL; 
  CCTK_REAL *gyz =NULL, *gzz =NULL; 
  CCTK_REAL *psi =NULL;
  CCTK_REAL *Mlin=NULL, *Nlin=NULL;   
  CCTK_REAL *var =NULL; 

  /* The inverse metric, allocated here */
  CCTK_REAL *uxx=NULL, *uyy=NULL, 
            *uzz=NULL, *uxz=NULL,
            *uxy=NULL, *uyz=NULL;

  /* shortcuts for metric, psi, deltas, etc. */
  CCTK_REAL pm4, p12, det;

  CCTK_REAL dx,dy,dz;
  CCTK_REAL dxdx, dydy, dzdz, 
            dxdy, dxdz, dydz;

  /* Some physical variables */
  int accel_cheb=0, accel_const=0;
  int chebit;
  CCTK_REAL omega, resnorm=0.0, residual=0.0;
  CCTK_REAL glob_residual=0.0, rjacobian=0.0; 
  CCTK_REAL finf;
  CCTK_INT npow;
  CCTK_REAL tol;


  /* Iteration / stepping  variables */
  int sorit; 
  int i,is,ie;
  int j,js,je;
  int k,ks,ke,kstep;
  int nxyz;
  
  /* 19 point stencil index */
  int ijk;
  int ipjk, ijpk, ijkp, imjk, ijmk, ijkm;
  int ipjpk, ipjmk, imjpk, imjmk;
  int ipjkp, ipjkm, imjkp, imjkm;
  int ijpkp, ijpkm, ijmkp, ijmkm;
 
  /* 19 point stencil coefficients */
  CCTK_REAL ac;
  CCTK_REAL ae,aw,an,as,at,ab;
  CCTK_REAL ane, anw, ase, asw, ate, atw, abe, abw;
  CCTK_REAL atn, ats, abn, abs;

  /* Miscellaneous */
  int sum_handle=-1;
  int sw[3], ierr;
  int Mstorage=0, Nstorage=0;
  size_t varsize;
  static int firstcall = 1;
  CCTK_REAL detrec_pm4, sqrtdet;


  /* Get the reduction handle */
  sum_handle = CCTK_ReductionArrayHandle("sum");
  if (sum_handle<0) 
    CCTK_WARN(1,"Cannot get reduction handle for operation >sum<");
  
  /* IF Robin BCs are set, prepare for a boundary call:
     setup stencil width and get Robin constants (set by the routine
     which is calling the solver interface) */
  if (CCTK_EQUALS(sor_bound,"robin")) { 
    sw[0]=1; 
    sw[1]=1; 
    sw[2]=1;
    
    ierr = Ell_GetRealKey(&finf, "EllLinConfMetric::Bnd::Robin::inf");
    ierr = Ell_GetIntKey (&npow, "EllLinConfMetric::Bnd::Robin::falloff");
  }

  /* Only supports absolute tolerance */
  tol   = AbsTol[0];
  if (CCTK_EQUALS(sor_accel,"const"))
    accel_const = 1;
  else if (CCTK_EQUALS(sor_accel,"cheb"))
    accel_cheb  = 1;

  /* Things to do only once! */
  if (firstcall==1) {
    if (CCTK_Equals(elliptic_verbose, "yes"))
      {
	if (accel_cheb)
	  printf("SOR with Chebyshev acceleration with radius of 1\n");
	else if (accel_const)
	  printf("SOR with hardcoded omega = 1.8\n");
	else
	  printf("SOR with unaccelearted relaxation (omega = 1)\n");
      }
    firstcall = 0;
  }
   

  /* Get the data ptr of these GFs, They all have to be
     on the same timelevel; derive the metric data pointer from 
     the index array. Note the ordering in the metric   */
  var = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, FieldIndex);
  gxx = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[0]);
  gxy = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[1]);
  gxz = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[2]);
  gyy = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[3]);
  gyz = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[4]);
  gzz = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[5]);
  

  if (conformal)
    psi = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[6]);

  /* if we have a negative index for M/N, this GF is not needed, 
     there for don't even look for it. when index positive,
     set flag Mstorage=1, dito for N */
  if (MIndex>=0)  { 
    Mlin = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,MIndex);
    Mstorage = 1;
  }
  if (NIndex>=0) {
    Nlin = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,NIndex);
    Nstorage = 1;
  }

  /* Shortcuts */
  dx   = GH->cctk_delta_space[0];
  dy   = GH->cctk_delta_space[1];
  dz   = GH->cctk_delta_space[2];
  nxyz = GH->cctk_lsh[0]*GH->cctk_lsh[1]*GH->cctk_lsh[2];


  /* Allocate the inverse metric */
  varsize = (size_t)CCTK_VarTypeSize(CCTK_VarTypeI(FieldIndex))*nxyz;
  if (!(uxx = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
  if (!(uyy = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
  if (!(uzz = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
  if (!(uxy = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
  if (!(uxz = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
  if (!(uyz = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");

  /* PreCalc the differential coeff. */
  dxdx = 1.0/(2.0*dx*dx);
  dydy = 1.0/(2.0*dy*dy);
  dzdz = 1.0/(2.0*dz*dz);
  dxdy = 1.0/(4.0*dx*dy);
  dxdz = 1.0/(4.0*dx*dz);
  dydz = 1.0/(4.0*dy*dz);

  /* Calculate the inverse metric */

  for (ijk=0;ijk<nxyz;ijk++) {

    /* determinant */
    det = -(SQR(gxz[ijk])*gyy[ijk]) + 
      2*gxy[ijk]*gxz[ijk]*gyz[ijk] - 
      gxx[ijk]*SQR(gyz[ijk])  -
      SQR(gxy[ijk])*gzz[ijk] + 
      gxx[ijk]*gyy[ijk]*gzz[ijk];
    
    if (conformal) {
      pm4 = 1.0/pow(psi[ijk],4.0);
      p12 = pow(psi[ijk],12.0);
    } else {
      pm4 = 1.0;
      p12 = 1.0;
    }


    /* try to avoid constly division */
    detrec_pm4 = 1.0/det*pm4;
    sqrtdet    = sqrt(det);

    uxx[ijk]=(-SQR(gyz[ijk])     + gyy[ijk]*gzz[ijk])*detrec_pm4;
    uxy[ijk]=( gxz[ijk]*gyz[ijk] - gxy[ijk]*gzz[ijk])*detrec_pm4;
    uxz[ijk]=(-gxz[ijk]*gyy[ijk] + gxy[ijk]*gyz[ijk])*detrec_pm4;
    uyy[ijk]=(-SQR(gxz[ijk])     + gxx[ijk]*gzz[ijk])*detrec_pm4;
    uyz[ijk]=( gxy[ijk]*gxz[ijk] - gxx[ijk]*gyz[ijk])*detrec_pm4;
    uzz[ijk]=(-SQR(gxy[ijk])     + gxx[ijk]*gyy[ijk])*detrec_pm4;
 	
    det    = det*p12;
    sqrtdet= sqrt(det);
   
    /* Rescaling for the uppermetric solver */
    if (Mstorage) Mlin[ijk] = Mlin[ijk]*sqrt(det);
    if (Nstorage) Nlin[ijk] = Nlin[ijk]*sqrt(det);
    
    uxx[ijk]=uxx[ijk]*dxdx*sqrtdet;
    uyy[ijk]=uyy[ijk]*dydy*sqrtdet;
    uzz[ijk]=uzz[ijk]*dzdz*sqrtdet;
    uxy[ijk]=uxy[ijk]*dxdy*sqrtdet;
    uxz[ijk]=uxz[ijk]*dxdz*sqrtdet;
    uyz[ijk]=uyz[ijk]*dydz*sqrtdet;

  }	

  /*$for (k=1;k<GH->cctk_lsh[2]-1;k++) {
    for (j=1;j<GH->cctk_lsh[1]-1;j++)   {
      for (i=1;i<GH->cctk_lsh[0]-1;i++)   {
	ijk   = CCTK_GFINDEX3D(GH,i,j,k); 
	printf("U G : %d %d %d   %7.8g  %7.8g  %7.8g \n",
	       i,j,k,uxx[ijk],uyy[ijk],gxx[ijk]);
      }
    }
  }$*/
	

  /* iteration boundaries (ks set inside loop)*/
  is = 1;
  js = 1;
  ie = GH->cctk_lsh[0]-1;
  je = GH->cctk_lsh[1]-1;
  ke = GH->cctk_lsh[2]-1;
  kstep = 2;

  /* start at 1 for historic (Fortran) reasons */
  for (sorit=1; sorit<=maxit; sorit++) {
    
    omega     =  1.0;
    rjacobian =  1.0;

    if (accel_cheb) 
      for (chebit=2;chebit<sorit;chebit++)
	omega = 1.0/(1.0 - 0.25*rjacobian*rjacobian*omega);
    if (accel_const)
      omega = 1.8;
    
    resnorm = 0.0;

    ks = (sorit%2)+1;
    if (GH->cctk_lsh[2]==3)
      ks = 1;

    for (k=ks;k<ke;k+=kstep) {
      for (j=js;j<je;j++)     {
	for (i=is;i<ie;i++)    {

	    ijk   = CCTK_GFINDEX3D(GH,i  ,j  ,k  );

	    ipjk  = CCTK_GFINDEX3D(GH,i+1,j  ,k  );
	    imjk  = CCTK_GFINDEX3D(GH,i-1,j  ,k  );
	    ijpk  = CCTK_GFINDEX3D(GH,i  ,j+1,k  );
	    ijmk  = CCTK_GFINDEX3D(GH,i  ,j-1,k  );
	    ijkp  = CCTK_GFINDEX3D(GH,i  ,j  ,k+1);
	    ijkm  = CCTK_GFINDEX3D(GH,i  ,j  ,k-1);

	    ipjpk = CCTK_GFINDEX3D(GH,i+1,j+1,k  );
	    ipjmk = CCTK_GFINDEX3D(GH,i+1,j-1,k  );
	    imjpk = CCTK_GFINDEX3D(GH,i-1,j+1,k  );
	    imjmk = CCTK_GFINDEX3D(GH,i-1,j-1,k  );

	    ijpkp = CCTK_GFINDEX3D(GH,i  ,j+1,k+1);
	    ijpkm = CCTK_GFINDEX3D(GH,i  ,j+1,k-1);
	    ijmkp = CCTK_GFINDEX3D(GH,i  ,j-1,k+1);
	    ijmkm = CCTK_GFINDEX3D(GH,i  ,j-1,k-1);

	    ipjkp = CCTK_GFINDEX3D(GH,i+1,j  ,k+1);
	    ipjkm = CCTK_GFINDEX3D(GH,i+1,j  ,k-1);
	    imjkp = CCTK_GFINDEX3D(GH,i-1,j  ,k+1);
	    imjkm = CCTK_GFINDEX3D(GH,i-1,j  ,k-1);
	    

	    ac = -1.0*uxx[ipjk] - 2.0*uxx[ijk] - 1.0*uxx[imjk]
	         -1.0*uyy[ijpk] - 2.0*uyy[ijk] - 1.0*uyy[ijmk]
	         -1.0*uzz[ijkp] - 2.0*uzz[ijk] - 1.0*uzz[ijkm];


	    if (Mstorage) 
	      ac += Mlin[ijk];


	    ae  = uxx[ipjk]+uxx[ijk];
	    aw  = uxx[imjk]+uxx[ijk];
	    an  = uyy[ijpk]+uyy[ijk];
	    as  = uyy[ijmk]+uyy[ijk];
	    at  = uzz[ijkp]+uzz[ijk];
	    ab  = uzz[ijkm]+uzz[ijk];

	    ane = uxy[ijpk]+uxy[ipjk];
	    anw =-uxy[imjk]-uxy[ijpk];
	    ase =-uxy[ipjk]-uxy[ijmk];
	    asw = uxy[imjk]+uxy[ijmk];

	    ate = uxz[ijkp]+uxz[ipjk];
	    atw =-uxz[imjk]-uxz[ijkp];
	    abe =-uxz[ipjk]-uxz[ijkm];
	    abw = uxz[imjk]+uxz[ijkm];
	    
	    atn = uyz[ijpk]+uyz[ijkp];               
	    ats =-uyz[ijkp]-uyz[ijmk];
	    abn =-uyz[ijkm]-uyz[ijpk];
	    abs = uyz[ijkm]+uyz[ijmk];

	    residual = ac * var[ijk]
	      + ae *var[ipjk]  +  aw*var[imjk]
	      + an *var[ijpk]  +  as*var[ijmk]
	      + at *var[ijkp]  +  ab*var[ijkm];

	    residual = residual 
	      + ane*var[ipjpk] + anw*var[imjpk]; 
	    
	    residual = residual 
	      + ase*var[ipjmk] + asw*var[imjmk];

	    residual = residual    
	      + ate*var[ipjkp] + atw*var[imjkp] 
	      + abe*var[ipjkm] + abw*var[imjkm]
	      + atn*var[ijpkp] + ats*var[ijmkp]
	      + abn*var[ijpkm] + abs*var[ijmkm];
	    
	    if (Nstorage)
	      residual +=Nlin[ijk];
    
	    resnorm  = resnorm + fabs(residual);
	    var[ijk] = var[ijk] - omega*residual/ac; 
	}
      }
    }

    /* reduction operation on processor-local residual values */
    ierr = CCTK_ReduceLocScalar(GH, -1, sum_handle,
				&resnorm, &glob_residual, CCTK_VARIABLE_REAL); 
    if (ierr<0) 
      CCTK_WARN(1,"Reduction of residual  failed");

    glob_residual = glob_residual /  
      (GH->cctk_gsh[0]*GH->cctk_gsh[1]*GH->cctk_gsh[2]);

    /* apply symmetry boundary conditions within loop */    
    if (CartSymVI(GH,FieldIndex)<0) 
      CCTK_WARN(1,"CartSymVI failed in EllSOR loop");
  
    /* apply boundary conditions within loop */
    if (CCTK_EQUALS(sor_bound,"robin"))
      ierr = BndRobinVI(GH, sw, finf, npow,  FieldIndex);

    /* synchronization of grid variable */
    CCTK_SyncGroupWithVarI(GH, FieldIndex);

    /* Leave iteration loop if tolerance criterium is met */
    if (glob_residual<tol)
      break;
  }

  /* Information for the user if the solve did not converge within 
     the given constraints of max.iteration and tolerance */
  if (residual>tol) 
    CCTK_VWarn(1,__LINE__,__FILE__,CCTK_THORNSTRING,
	       "SOR SOLVER DID NOT CONVERGE within given "
	       "tolerance/max.number of iterations.\n "
	       "max. iteration %d   residual (tolerance): %g (%g)\n",
	       maxit, glob_residual, tol );

  if (uxx) free(uxx); 
  if (uyy) free(uyy); 
  if (uzz) free(uzz);
  if (uxy) free(uxy); 
  if (uxz) free(uxz); 
  if (uyz) free(uyz);

  return;
}