aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorlanfer <lanfer@fa3da13c-9f13-4301-a575-cf5b8c5e1907>2000-09-26 10:55:23 +0000
committerlanfer <lanfer@fa3da13c-9f13-4301-a575-cf5b8c5e1907>2000-09-26 10:55:23 +0000
commit258ae09276f7737e50c5d40449679aa62f4e50aa (patch)
treee66e631df2016be2286d804e0358d97305818627
parent9cdfcec8a2dc9e8f330f51797058e03e29104689 (diff)
SOR solvers for flat and conformal metric
git-svn-id: http://svn.cactuscode.org/arrangements/CactusElliptic/EllSOR/trunk@59 fa3da13c-9f13-4301-a575-cf5b8c5e1907
-rw-r--r--src/sor_confmetric.c413
-rw-r--r--src/sor_flat.c219
2 files changed, 632 insertions, 0 deletions
diff --git a/src/sor_confmetric.c b/src/sor_confmetric.c
new file mode 100644
index 0000000..b0df762
--- /dev/null
+++ b/src/sor_confmetric.c
@@ -0,0 +1,413 @@
+ /*@@
+ @file sor_confmetric.c
+ @date Tue Sep 26 11:29:18 2000
+ @author Gerd Lanfermann
+ @desc
+ Provides sor solver engine routines
+ @enddesc
+ @@*/
+
+
+#include <stdlib.h>
+#include <stdio.h>
+#include <math.h>
+
+#include "cctk.h"
+#include "cctk_Arguments.h"
+#include "cctk_Parameters.h"
+
+#include "CactusBase/Boundary/src/Boundary.h"
+#include "CactusBase/CartGrid3D/src/Symmetry.h"
+#include "CactusElliptic/EllBase/src/Ell_DBstructure.h"
+
+
+#define SQR(a) ((a)*(a))
+
+ /*@@
+ @routine sor_confmetric
+ @date Tue Sep 26 11:28:08 2000
+ @author Joan Masso, Paul Walker, Gerd Lanfermann
+ @desc
+ This is a standalone sor solver engine,
+ called by the wrapper functions
+ @enddesc
+ @calls
+ @calledby
+ @history
+
+ @endhistory
+
+@@*/
+
+
+
+void sor_confmetric_3d(cGH *GH, int *MetricPsiI, int conformal,
+ int FieldIndex, int MIndex, int NIndex,
+ CCTK_REAL *AbsTol, CCTK_REAL *RelTol)
+{
+ DECLARE_CCTK_PARAMETERS
+
+ /* The pointer to the metric fields */
+ CCTK_REAL *gxx =NULL, *gxy =NULL;
+ CCTK_REAL *gxz =NULL, *gyy =NULL;
+ CCTK_REAL *gyz =NULL, *gzz =NULL;
+ CCTK_REAL *psi =NULL;
+ CCTK_REAL *Mlin=NULL, *Nlin=NULL;
+ CCTK_REAL *var =NULL;
+
+ /* The inverse metric, allocated here */
+ CCTK_REAL *uxx=NULL, *uyy=NULL,
+ *uzz=NULL, *uxz=NULL,
+ *uxy=NULL, *uyz=NULL;
+
+ /* shortcuts for metric, psi, deltas, etc. */
+ CCTK_REAL pm4, p12, det;
+
+ CCTK_REAL dx,dy,dz;
+ CCTK_REAL dxdx, dydy, dzdz,
+ dxdy, dxdz, dydz;
+
+ /* Some physical variables */
+ int accel_cheb=0, accel_const=0;
+ int chebit;
+ CCTK_REAL omega, resnorm=0.0, residual=0.0;
+ CCTK_REAL glob_residual=0.0, rjacobian=0.0;
+ CCTK_REAL finf;
+ int npow;
+ CCTK_REAL tol;
+
+
+ /* Iteration / stepping variables */
+ int sorit;
+ int i,is,ie;
+ int j,js,je;
+ int k,ks,ke,kstep;
+ int nxyz;
+
+ /* 19 point stencil index */
+ int ijk;
+ int ipjk, ijpk, ijkp, imjk, ijmk, ijkm;
+ int ipjpk, ipjmk, imjpk, imjmk;
+ int ipjkp, ipjkm, imjkp, imjkm;
+ int ijpkp, ijpkm, ijmkp, ijmkm;
+
+ /* 19 point stencil coefficients */
+ CCTK_REAL ac;
+ CCTK_REAL ae,aw,an,as,at,ab;
+ CCTK_REAL ane, anw, ase, asw, ate, atw, abe, abw;
+ CCTK_REAL atn, ats, abn, abs;
+
+ /* Miscellaneous */
+ int sum_handle=-1;
+ int sw[3], ierr;
+ int Mstorage=0, Nstorage=0;
+ size_t varsize;
+ static int firstcall = 1;
+ CCTK_REAL detrec_pm4, sqrtdet;
+
+
+ /* Get the reduction handle */
+ sum_handle = CCTK_ReductionArrayHandle("sum");
+ if (sum_handle<0)
+ CCTK_WARN(1,"Cannot get reduction handle for operation >sum<");
+
+ /* IF Robin BCs are set, prepare for a boundary call:
+ setup stencil width and get Robin constants (set by the routine
+ which is calling the solver interface) */
+ if (CCTK_EQUALS(sor_bound,"robin")) {
+ sw[0]=1;
+ sw[1]=1;
+ sw[2]=1;
+
+ ierr = Ell_GetRealKey(&finf, "EllLinConfMetric::Bnd::Robin::inf");
+ ierr = Ell_GetIntKey (&npow, "EllLinConfMetric::Bnd::Robin::falloff");
+ }
+
+ /* Only supports absolute tolerance */
+ tol = AbsTol[0];
+ if (CCTK_EQUALS(sor_accel,"const"))
+ accel_const = 1;
+ else if (CCTK_EQUALS(sor_accel,"cheb"))
+ accel_cheb = 1;
+
+ /* Things to do only once! */
+ if (firstcall==1) {
+ if (CCTK_Equals(elliptic_verbose, "yes"))
+ {
+ if (accel_cheb)
+ printf("SOR with Chebyshev acceleration with radius of 1\n");
+ else if (accel_const)
+ printf("SOR with hardcoded omega = 1.8\n");
+ else
+ printf("SOR with unaccelearted relaxation (omega = 1)\n");
+ }
+ firstcall = 0;
+ }
+
+
+ /* Get the data ptr of these GFs, They all have to be
+ on the same timelevel; derive the metric data pointer from
+ the index array. Note the ordering in the metric */
+ var = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, FieldIndex);
+ gxx = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[0]);
+ gxy = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[1]);
+ gxz = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[2]);
+ gyy = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[3]);
+ gyz = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[4]);
+ gzz = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[5]);
+
+
+ if (conformal)
+ psi = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[6]);
+
+ /* if we have a negative index for M/N, this GF is not needed,
+ there for don't even look for it. when index positive,
+ set flag Mstorage=1, dito for N */
+ if (MIndex>=0) {
+ Mlin = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,MIndex);
+ Mstorage = 1;
+ }
+ if (NIndex>=0) {
+ Nlin = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,NIndex);
+ Nstorage = 1;
+ }
+
+ /* Shortcuts */
+ dx = GH->cctk_delta_space[0];
+ dy = GH->cctk_delta_space[1];
+ dz = GH->cctk_delta_space[2];
+ nxyz = GH->cctk_lsh[0]*GH->cctk_lsh[1]*GH->cctk_lsh[2];
+
+
+ /* Allocate the inverse metric */
+ varsize = (size_t)CCTK_VarTypeSize(CCTK_VarTypeI(FieldIndex))*nxyz;
+ if (!(uxx = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
+ if (!(uyy = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
+ if (!(uzz = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
+ if (!(uxy = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
+ if (!(uxz = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
+ if (!(uyz = (CCTK_REAL*) malloc(varsize))) CCTK_WARN(0,"Allocation failed");
+
+ /* PreCalc the differential coeff. */
+ dxdx = 1.0/(2.0*dx*dx);
+ dydy = 1.0/(2.0*dy*dy);
+ dzdz = 1.0/(2.0*dz*dz);
+ dxdy = 1.0/(4.0*dx*dy);
+ dxdz = 1.0/(4.0*dx*dz);
+ dydz = 1.0/(4.0*dy*dz);
+
+ /* Calculate the inverse metric */
+
+ for (ijk=0;ijk<nxyz;ijk++) {
+
+ /* determinant */
+ det = -(SQR(gxz[ijk])*gyy[ijk]) +
+ 2*gxy[ijk]*gxz[ijk]*gyz[ijk] -
+ gxx[ijk]*SQR(gyz[ijk]) -
+ SQR(gxy[ijk])*gzz[ijk] +
+ gxx[ijk]*gyy[ijk]*gzz[ijk];
+
+ if (conformal) {
+ pm4 = 1.0/pow(psi[ijk],4.0);
+ p12 = pow(psi[ijk],12.0);
+ } else {
+ pm4 = 1.0;
+ p12 = 1.0;
+ }
+
+
+ /* try to avoid constly division */
+ detrec_pm4 = 1.0/det*pm4;
+ sqrtdet = sqrt(det);
+
+ uxx[ijk]=(-SQR(gyz[ijk]) + gyy[ijk]*gzz[ijk])*detrec_pm4;
+ uxy[ijk]=( gxz[ijk]*gyz[ijk] - gxy[ijk]*gzz[ijk])*detrec_pm4;
+ uxz[ijk]=(-gxz[ijk]*gyy[ijk] + gxy[ijk]*gyz[ijk])*detrec_pm4;
+ uyy[ijk]=(-SQR(gxz[ijk]) + gxx[ijk]*gzz[ijk])*detrec_pm4;
+ uyz[ijk]=( gxy[ijk]*gxz[ijk] - gxx[ijk]*gyz[ijk])*detrec_pm4;
+ uzz[ijk]=(-SQR(gxy[ijk]) + gxx[ijk]*gyy[ijk])*detrec_pm4;
+
+ det = det*p12;
+ sqrtdet= sqrt(det);
+
+ /* Rescaling for the uppermetric solver */
+ if (Mstorage) Mlin[ijk] = Mlin[ijk]*sqrt(det);
+ if (Nstorage) Nlin[ijk] = Nlin[ijk]*sqrt(det);
+
+ uxx[ijk]=uxx[ijk]*dxdx*sqrtdet;
+ uyy[ijk]=uyy[ijk]*dydy*sqrtdet;
+ uzz[ijk]=uzz[ijk]*dzdz*sqrtdet;
+ uxy[ijk]=uxy[ijk]*dxdy*sqrtdet;
+ uxz[ijk]=uxz[ijk]*dxdz*sqrtdet;
+ uyz[ijk]=uyz[ijk]*dydz*sqrtdet;
+
+ }
+
+ /*$for (k=1;k<GH->cctk_lsh[2]-1;k++) {
+ for (j=1;j<GH->cctk_lsh[1]-1;j++) {
+ for (i=1;i<GH->cctk_lsh[0]-1;i++) {
+ ijk = CCTK_GFINDEX3D(GH,i,j,k);
+ printf("U G : %d %d %d %7.8g %7.8g %7.8g \n",
+ i,j,k,uxx[ijk],uyy[ijk],gxx[ijk]);
+ }
+ }
+ }$*/
+
+
+ /* iteration boundaries (ks set inside loop)*/
+ is = 1;
+ js = 1;
+ ie = GH->cctk_lsh[0]-1;
+ je = GH->cctk_lsh[1]-1;
+ ke = GH->cctk_lsh[2]-1;
+ kstep = 2;
+
+ /* start at 1 for historic (Fortran) reasons */
+ for (sorit=1; sorit<=maxit; sorit++) {
+
+ omega = 1.0;
+ rjacobian = 1.0;
+
+ if (accel_cheb)
+ for (chebit=2;chebit<sorit;chebit++)
+ omega = 1.0/(1.0 - 0.25*rjacobian*rjacobian*omega);
+ if (accel_const)
+ omega = 1.8;
+
+ resnorm = 0.0;
+
+ ks = (sorit%2)+1;
+ if (GH->cctk_lsh[2]==3)
+ ks = 1;
+
+ for (k=ks;k<ke;k+=kstep) {
+ for (j=js;j<je;j++) {
+ for (i=is;i<ie;i++) {
+
+ ijk = CCTK_GFINDEX3D(GH,i ,j ,k );
+
+ ipjk = CCTK_GFINDEX3D(GH,i+1,j ,k );
+ imjk = CCTK_GFINDEX3D(GH,i-1,j ,k );
+ ijpk = CCTK_GFINDEX3D(GH,i ,j+1,k );
+ ijmk = CCTK_GFINDEX3D(GH,i ,j-1,k );
+ ijkp = CCTK_GFINDEX3D(GH,i ,j ,k+1);
+ ijkm = CCTK_GFINDEX3D(GH,i ,j ,k-1);
+
+ ipjpk = CCTK_GFINDEX3D(GH,i+1,j+1,k );
+ ipjmk = CCTK_GFINDEX3D(GH,i+1,j-1,k );
+ imjpk = CCTK_GFINDEX3D(GH,i-1,j+1,k );
+ imjmk = CCTK_GFINDEX3D(GH,i-1,j-1,k );
+
+ ijpkp = CCTK_GFINDEX3D(GH,i ,j+1,k+1);
+ ijpkm = CCTK_GFINDEX3D(GH,i ,j+1,k-1);
+ ijmkp = CCTK_GFINDEX3D(GH,i ,j-1,k+1);
+ ijmkm = CCTK_GFINDEX3D(GH,i ,j-1,k-1);
+
+ ipjkp = CCTK_GFINDEX3D(GH,i+1,j ,k+1);
+ ipjkm = CCTK_GFINDEX3D(GH,i+1,j ,k-1);
+ imjkp = CCTK_GFINDEX3D(GH,i-1,j ,k+1);
+ imjkm = CCTK_GFINDEX3D(GH,i-1,j ,k-1);
+
+
+ ac = -1.0*uxx[ipjk] - 2.0*uxx[ijk] - 1.0*uxx[imjk]
+ -1.0*uyy[ijpk] - 2.0*uyy[ijk] - 1.0*uyy[ijmk]
+ -1.0*uzz[ijkp] - 2.0*uzz[ijk] - 1.0*uzz[ijkm];
+
+
+ if (Mstorage)
+ ac += Mlin[ijk];
+
+
+ ae = uxx[ipjk]+uxx[ijk];
+ aw = uxx[imjk]+uxx[ijk];
+ an = uyy[ijpk]+uyy[ijk];
+ as = uyy[ijmk]+uyy[ijk];
+ at = uzz[ijkp]+uzz[ijk];
+ ab = uzz[ijkm]+uzz[ijk];
+
+ ane = uxy[ijpk]+uxy[ipjk];
+ anw =-uxy[imjk]-uxy[ijpk];
+ ase =-uxy[ipjk]-uxy[ijmk];
+ asw = uxy[imjk]+uxy[ijmk];
+
+ ate = uxz[ijkp]+uxz[ipjk];
+ atw =-uxz[imjk]-uxz[ijkp];
+ abe =-uxz[ipjk]-uxz[ijkm];
+ abw = uxz[imjk]+uxz[ijkm];
+
+ atn = uyz[ijpk]+uyz[ijkp];
+ ats =-uyz[ijkp]-uyz[ijmk];
+ abn =-uyz[ijkm]-uyz[ijpk];
+ abs = uyz[ijkm]+uyz[ijmk];
+
+ residual = ac * var[ijk]
+ + ae *var[ipjk] + aw*var[imjk]
+ + an *var[ijpk] + as*var[ijmk]
+ + at *var[ijkp] + ab*var[ijkm];
+
+ residual = residual
+ + ane*var[ipjpk] + anw*var[imjpk];
+
+ residual = residual
+ + ase*var[ipjmk] + asw*var[imjmk];
+
+ residual = residual
+ + ate*var[ipjkp] + atw*var[imjkp]
+ + abe*var[ipjkm] + abw*var[imjkm]
+ + atn*var[ijpkp] + ats*var[ijmkp]
+ + abn*var[ijpkm] + abs*var[ijmkm];
+
+ if (Nstorage)
+ residual +=Nlin[ijk];
+
+ resnorm = resnorm + fabs(residual);
+ var[ijk] = var[ijk] - omega*residual/ac;
+ }
+ }
+ }
+
+ /* reduction operation on processor-local residual values */
+ ierr = CCTK_ReduceLocScalar(GH, -1, sum_handle,
+ &resnorm, &glob_residual, CCTK_VARIABLE_REAL);
+ if (ierr<0)
+ CCTK_WARN(1,"Reduction of residual failed");
+
+ glob_residual = glob_residual /
+ (GH->cctk_gsh[0]*GH->cctk_gsh[1]*GH->cctk_gsh[2]);
+
+ /* apply symmetry boundary conditions within loop */
+ if (CartSymVI(GH,FieldIndex)<0)
+ CCTK_WARN(1,"CartSymVI failed in EllSOR loop");
+
+ /* apply boundary conditions within loop */
+ if (CCTK_EQUALS(sor_bound,"robin"))
+ ierr = BndRobinVI(GH, sw, finf, npow, FieldIndex);
+
+ /* synchronization of grid variable */
+ CCTK_SyncGroupWithVarI(GH, FieldIndex);
+
+ /* Leave iteration loop if tolerance criterium is met */
+ if (glob_residual<tol)
+ break;
+ }
+
+ /* Information for the user if the solve did not converge within
+ the given constraints of max.iteration and tolerance */
+ if (residual>tol)
+ CCTK_VWarn(1,__LINE__,__FILE__,CCTK_THORNSTRING,
+ "SOR SOLVER DID NOT CONVERGE within given "
+ "tolerance/max.number of iterations.\n "
+ "max. iteration %d residual (tolerance): %g (%g)\n",
+ maxit, glob_residual, tol );
+
+ if (uxx) free(uxx);
+ if (uyy) free(uyy);
+ if (uzz) free(uzz);
+ if (uxy) free(uxy);
+ if (uxz) free(uxz);
+ if (uyz) free(uyz);
+
+ return;
+}
+
+
diff --git a/src/sor_flat.c b/src/sor_flat.c
new file mode 100644
index 0000000..0117894
--- /dev/null
+++ b/src/sor_flat.c
@@ -0,0 +1,219 @@
+#include <stdlib.h>
+#include <stdio.h>
+#include <math.h>
+
+#include "cctk.h"
+#include "cctk_Arguments.h"
+#include "cctk_Parameters.h"
+
+#include "CactusBase/Boundary/src/Boundary.h"
+#include "CactusBase/CartGrid3D/src/Symmetry.h"
+#include "CactusElliptic/EllBase/src/Ell_DBstructure.h"
+
+
+void sor_flat_3d(cGH *GH, int FieldIndex, int MIndex, int NIndex,
+ CCTK_REAL *AbsTol, CCTK_REAL *RelTol)
+{
+
+ DECLARE_CCTK_PARAMETERS
+
+ /* The pointer to the data fields */
+ CCTK_REAL *Mlin=NULL, *Nlin=NULL;
+ CCTK_REAL *var =NULL;
+
+ /* shortcuts for deltas,etc. */
+ CCTK_REAL dx,dy,dz;
+
+ /* Some physical variables */
+ int accel_cheb=0, accel_const=0;
+ int chebit;
+ CCTK_REAL omega, resnorm, residual, glob_residual, rjacobian;
+ CCTK_REAL finf;
+ int npow;
+ CCTK_REAL tol;
+
+ /* Iteration / stepping variables */
+ int sorit;
+ int i,is,ie;
+ int j,js,je;
+ int k,ks,ke,kstep;
+ int nxyz;
+
+ /* stencil index */
+ int ijk;
+ int ipjk, ijpk, ijkp, imjk, ijmk, ijkm;
+
+ /* Coeeficients for the stencil... */
+ CCTK_REAL ac,ac_orig,aw,ae,an,as,at,ab;
+
+ /* Miscellaneous */
+ int sum_handle=-1;
+ int sw[3], ierr;
+ int Mstorage=0, Nstorage=0;
+ static int firstcall = 1;
+ CCTK_REAL dx2rec, dy2rec, dz2rec;
+
+
+ /* Get the reduction handle */
+ sum_handle = CCTK_ReductionArrayHandle("sum");
+ if (sum_handle<0)
+ CCTK_WARN(1,"Cannot get reduction handle for operation >sum<");
+
+ /* IF Robin BCs are set, prepare for a boundary call:
+ setup stencil width and get Robin constants (set by the routine
+ which is calling the solver interface) */
+ if (CCTK_EQUALS(sor_bound,"robin")) {
+ sw[0]=1;
+ sw[1]=1;
+ sw[2]=1;
+
+ ierr = Ell_GetRealKey(&finf, "EllLinConfMetric::Bnd::Robin::inf");
+ ierr = Ell_GetIntKey (&npow, "EllLinConfMetric::Bnd::Robin::falloff");
+ }
+
+ /* Only supports absolute tolerance */
+ tol = AbsTol[0];
+ if (CCTK_EQUALS(sor_accel,"const"))
+ accel_const = 1;
+ else if (CCTK_EQUALS(sor_accel,"cheb"))
+ accel_cheb = 1;
+
+ /* Things to do only once! */
+ if (firstcall==1) {
+ if (CCTK_Equals(elliptic_verbose, "yes"))
+ {
+ if (accel_cheb)
+ printf("SOR with Chebyshev acceleration with radius of 1\n");
+ else if (accel_const)
+ printf("SOR with hardcoded omega = 1.8\n");
+ else
+ printf("SOR with unaccelearted relaxation (omega = 1)\n");
+ }
+ firstcall = 0;
+ }
+
+ /* Get the data ptr of these GFs, They all have to be
+ on the same timelevel; if we have a negative index for M/N,
+ this GF is not set, there for don't even look for it and flag it */
+ var = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, FieldIndex);
+ if (MIndex>=0) {
+ Mlin = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,MIndex);
+ Mstorage = 1;
+ }
+ if (NIndex>=0) {
+ Nlin = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,NIndex);
+ Nstorage = 1;
+ }
+
+ /* Shortcuts */
+ dx = GH->cctk_delta_space[0];
+ dy = GH->cctk_delta_space[1];
+ dz = GH->cctk_delta_space[2];
+ nxyz = GH->cctk_lsh[0]*GH->cctk_lsh[1]*GH->cctk_lsh[2];
+
+ dx2rec = 1.0/(dx*dx);
+ dy2rec = 1.0/(dy*dy);
+ dz2rec = 1.0/(dz*dz);
+
+ ae = dx2rec;
+ aw = dx2rec;
+ an = dy2rec;
+ as = dy2rec;
+ at = dz2rec;
+ ab = dz2rec;
+
+ ac_orig = -2.0*dx2rec - 2.0*dy2rec - 2.0*dz2rec;
+
+ is = 1;
+ js = 1;
+ ie = GH->cctk_lsh[0]-1;
+ je = GH->cctk_lsh[1]-1;
+ ke = GH->cctk_lsh[2]-1;
+ kstep = 2;
+
+ /* start at 1 for historic (Fortran) reasons */
+ for (sorit=1; sorit<=maxit; sorit++) {
+
+ omega = 1.0;
+ rjacobian = 1.0;
+
+ if (accel_cheb)
+ for (chebit=2;chebit<sorit;chebit++)
+ omega = 1.0/(1.0 - 0.25*rjacobian*rjacobian*omega);
+ if (accel_const)
+ omega = 1.8;
+
+ resnorm = 0.0;
+
+ ks = (sorit%2)+1;
+ if (GH->cctk_lsh[2]==3)
+ ks = 2;
+
+ for (k=ks;k<ke;k+=kstep) {
+ for (j=js;j<je;j++) {
+ for (i=is;i<ie;i++) {
+
+ ac = ac_orig;
+
+ ijk = CCTK_GFINDEX3D(GH,i ,j ,k );
+ ipjk = CCTK_GFINDEX3D(GH,i+1,j ,k );
+ imjk = CCTK_GFINDEX3D(GH,i-1,j ,k );
+ ijpk = CCTK_GFINDEX3D(GH,i ,j+1,k );
+ ijmk = CCTK_GFINDEX3D(GH,i ,j-1,k );
+ ijkp = CCTK_GFINDEX3D(GH,i ,j ,k+1);
+ ijkm = CCTK_GFINDEX3D(GH,i ,j ,k-1);
+
+ if (Mstorage)
+ ac += Mlin[ijk];
+
+ residual = ac * var[ijk]
+ + ae *var[ipjk] + aw*var[imjk]
+ + an *var[ijpk] + as*var[ijmk]
+ + at *var[ijkp] + ab*var[ijkm];
+
+ if (Nstorage)
+ residual +=Nlin[ijk];
+
+ resnorm = resnorm + fabs(residual);
+
+ var[ijk] = var[ijk] - omega*residual/ac;
+
+ printf(" %d %d %d %f \n",i,j,k,var[ijk]);
+
+ }
+ }
+ }
+
+ /* reduction operation on processor-local residual values */
+ ierr = CCTK_ReduceLocScalar(GH, -1, sum_handle,
+ &resnorm, &glob_residual, CCTK_VARIABLE_REAL);
+ if (ierr<0)
+ CCTK_WARN(1,"Reduction of Norm failed");
+
+ glob_residual = glob_residual /
+ (GH->cctk_gsh[0]*GH->cctk_gsh[1]*GH->cctk_gsh[2]);
+
+ /* apply symmetry boundary conditions within loop */
+ if (CartSymVI(GH,FieldIndex)<0)
+ CCTK_WARN(1,"CartSymVI failed in EllSOR loop");
+
+ /* apply boundary conditions within loop */
+ if (CCTK_EQUALS(sor_bound,"robin"))
+ ierr = BndRobinVI(GH, sw, finf, npow, FieldIndex);
+
+ /* synchronization of grid variable */
+ CCTK_SyncGroupWithVarI(GH, FieldIndex);
+
+ /* Leave iteration loop if tolerance criterium is met */
+ if (glob_residual<tol)
+ break;
+
+ }
+
+ if (glob_residual>tol)
+ CCTK_WARN(2,"SOR SOLVER DID NOT CONVERGE");
+
+ return;
+}
+
+