aboutsummaryrefslogtreecommitdiff
path: root/src/petsc_confmetric_solver.c
blob: 5a3d8a60a6ac108ef89e699506c0a4c3892e37f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
/*@@
   @file      PETScEll_conformal.c
   @date      Wed Apr  9 09:31:24 1997
   @author    Paul Walker
   @desc
   A nabla phi - M phi = N elliptic solver based around PETSc.
   For information, see the documentation for @seeroutine petscEll_conformal
   @enddesc
   @version $Header$
@@*/


#include <stdlib.h>

#include "cctk.h"
#include "cctk_Parameters.h"

#include <petsc.h>
#include <petscversion.h>

/* Include some definitions for backwards compatibility */
#include "petsc_defines.h"

#include "ellpetsc.h"
#include "CactusPUGH/PUGH/src/include/pugh.h"

static const char *rcsid = "$Header$";

CCTK_FILEVERSION(CactusElliptic_EllPETSc_petsc_confmetric_solver_c)

/*#define DEBUG*/

/*Don't know what these actually mean! FIXME */
#define ELLCONV_ABSOLUTE 0
#define ELLCONV_RELATIVE 1
#define ELLCONV_EITHER   2

/* direction macros */
#define XDP   1
#define XDM   0
#define YDP   3
#define YDM   2
#define ZDP   5
#define ZDM   4

/* A few convenient macros */
#define a(i,j,k) a[i+1 + 3*(j+1 + 3*(k+1))]
#define SQR(a) ((a)*(a))

  
/* Some useful definitions to deal with the upper metric */
#define Uxx(i,j,k) uxx3[DATINDEX(pEx,(i),(j),(k))]
#define Uxy(i,j,k) uxy3[DATINDEX(pEx,(i),(j),(k))]
#define Uxz(i,j,k) uxz3[DATINDEX(pEx,(i),(j),(k))]
#define Uyy(i,j,k) uyy3[DATINDEX(pEx,(i),(j),(k))]
#define Uyz(i,j,k) uyz3[DATINDEX(pEx,(i),(j),(k))]
#define Uzz(i,j,k) uzz3[DATINDEX(pEx,(i),(j),(k))]
  

/* Place the matrix in global space so we can keep it around
   with the memory stripped out. Thanks, Barry!  */

static int trips=0;
static Mat     *A;           /* linear system matrix */
static Vec     soln, b;      /* approx solution, RHS */
static SLES    sles;         /* linear solver context */


int petsc_confmetric_solver(cGH *GH, int *MetricPsiI, int MetricPsiISize, 
                             int FieldIndex, int MIndex, int NIndex, 
                             CCTK_REAL *AbsTol, CCTK_REAL *RelTol);
void *GetDataPtr_NextTL(cGH *GH, const char *field);


void *GetDataPtr_NextTL(cGH *GH, const char *field) {
  int index;

  char *err;

  index = CCTK_VarIndex(field);
  if (index<0) {
    err = (char*) malloc( 256*sizeof(char));
    sprintf(err,"ERROR: Index for >%s< not found",field);
    CCTK_WARN(1,err);
    if (err) free(err);
  }
  return((CCTK_REAL*)CCTK_VarDataPtrI(GH,0,index));
}


/* This passing matches that of in the convention in the
   elliptic registration routine see LinearElliptic.h*/

int petsc_confmetric_solver(cGH *GH, int *MetricPsiI, int MetricPsiISize, 
                             int FieldIndex, int MIndex, int NIndex, 
                             CCTK_REAL *AbsTol, CCTK_REAL *RelTol) {

  DECLARE_CCTK_PARAMETERS    /* CCTK passed parameters */


  PC     pc;            /* preconditioner context */
  KSP    ksp;           /* Krylov subspace method context */
  int    num_A;         /* Number of A-arrays as needed ny Dan's MG */
  
  int    ierr;          /* Check the return status of petsc */
  int    retcode;       /* Check the return status of CCTK */

  double  a[27];        /* The stencil array */
  int     rank;         /* Rank of the matrix/vector */
  int     its;          /* Number of iterations */
  
  /* Loopers */
  int i,j,k,l,m,n;

  /* loop limits put in for stencil_w !=1     Ed Evans 1/19/98 */
  int imin,imax,jmin,jmax,kmin,kmax;
   
  pGH *pughGH;                 /* The pugh Extension handle */
  pGExtras *pEx;
  pConnectivity *pCon;
  int myproc;                  /* out processor */

  /* Tolerances */
  CCTK_REAL rtol=0, atolerance=0, tolerance;
    
  /* Values to assemble the matrix */
  CCTK_REAL two=2.0, four=4.0, tmp, det;
  CCTK_REAL pm4, psixp,psiyp,psizp;
  CCTK_REAL dx,dy,dz;
  CCTK_REAL uxx=0,uxy=0,uxz=0,uyy=0,uyz=0,uzz=0;
  CCTK_REAL Gxxx,Gxxy,Gxxz,Gxyy,Gxyz,Gxzz; /* Christoffels */
  CCTK_REAL Gyxx,Gyxy,Gyxz,Gyyy,Gyyz,Gyzz;
  CCTK_REAL Gzxx,Gzxy,Gzxz,Gzyy,Gzyz,Gzzz;
  CCTK_REAL dxxx,dxxy,dxxz,dxyy,dxyz,dxzz;
  CCTK_REAL dyxx,dyxy,dyxz,dyyy,dyyz,dyzz;
  CCTK_REAL dzxx,dzxy,dzxz,dzyy,dzyz,dzzz;
  CCTK_REAL *values;
  
  int nxs,nys,nzs;      /* Size of the grid with stencils off... */
  int startpoint=0;     /* My starting index (per proc) */
  int endpoint;         /* One more than my end */
  int pstart, pend;     /* A check for PETSc layout */
  int pvstart, pvend;   /* A check for PETSc layout */
  int verbose;          /* Is the solver verbose */
  int debug;            /* Is the solver debug-verbose */
  int octant;           /* Apply octant BCs inside */
  int conformal=0;        /* Do we have conformal metric ? */
  int nabla_form=0;       /* Which form of the nable */
  int matnormalize;     /* Normalize the central mat value to one? */
  CCTK_REAL ac;         /* Storage for a(0,0,0) for renorm */
  int PetscTolStyle;

  /* For the upper metric form of nabla */
  CCTK_REAL *uxx3=NULL, *uxy3=NULL, *uxz3=NULL, *uyy3=NULL, *uyz3=NULL, *uzz3=NULL;

  
  /* Pointers to the data of : petsc workspace/ the GF to solve /
     metric / psi / derivs(psi) / Mlinear / Nlinear(source) */
  CCTK_REAL *wsp =NULL, *ell_field=NULL; 
  CCTK_REAL *gxx =NULL, *gxy =NULL; 
  CCTK_REAL *gxz =NULL, *gyy =NULL; 
  CCTK_REAL *gyz =NULL, *gzz =NULL; 
  CCTK_REAL *Mlin=NULL, *Nlin=NULL;   
  CCTK_REAL *psi =NULL;
  CCTK_REAL *psix=NULL, *psiy=NULL, *psiz=NULL; 

  int Mstorage=0, Nstorage=0;


  RelTol = RelTol;

  octant       = CCTK_Equals(domain,"octant");
  verbose      = CCTK_Equals(petsc_verbose,"yes")||
                 CCTK_Equals(petsc_verbose,"debug");
  debug        = CCTK_Equals(petsc_verbose,"debug");
  matnormalize = 0; 
  
  if (MetricPsiISize==7) conformal=1;
  else if (MetricPsiISize==7) conformal=0;
  else CCTK_WARN(0,"Size of the Metric must be either 7 (metric+conformal) or 6 (metric)");


  /* FIXME, the TolAbs/TolRel will be evaluated here */
  PetscTolStyle=0;
  tolerance    =AbsTol[0];

  /* Get the link to pugh Extension */
  pughGH = PUGH_pGH(GH);
  if (!pughGH) CCTK_WARN(0,"ETERNAL ERROR: Cannot find PUGH Extension Handle\n");

  /* Get the extras extension for 3D grid functions */
  pEx = pughGH->GFExtras[2];
  pCon = pughGH->Connectivity[2];

  /* Things to do on first iteration */
  if (trips==0) {
    int argc;
    char **argv; 

    if (debug) {
#ifdef DEBUG
      printf("PETSc: initial trip: %d \n",trips);
#endif
    }



    /* Get the commandline arguments */
    argc = CCTK_CommandLine(&argv);

    /* Set the PETSc communicator to set of PUGH and
       initialzie PETSc */
    ierr = PetscSetCommWorld(pughGH->PUGH_COMM_WORLD); CHKERRQ(ierr);
    PetscInitialize(&argc,&argv,NULL,NULL); 

    CCTK_INFO("PETSc initialized");
  }

  trips++;

  /* Create a array of matrices A */
  /* num_A = MultiGridCount(); */
  num_A = 1;
  A=(Mat*) malloc (sizeof(Mat)*num_A);
  
  /* Get the data ptr of these GFs, They all have to be
     on the same timelevel */

  /* derive the metric data pointer from the index array. 
     Note the ordering in the metric */
  ell_field = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,FieldIndex);
  gxx = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[0]);
  gxy = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[1]);
  gxz = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[2]);
  gyy = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[3]);
  gyz = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[4]);
  gzz = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[5]);

  /* FIXME: evolved derivatives should go! -> Einstein specific*/  
  if (conformal) {
    psi = (CCTK_REAL*) CCTK_VarDataPtrI(GH, 0, MetricPsiI[6]);
    psix =(CCTK_REAL*) GetDataPtr_NextTL(GH,"einstein::psix");
    psiy =(CCTK_REAL*) GetDataPtr_NextTL(GH,"einstein::psiy");
    psiz =(CCTK_REAL*) GetDataPtr_NextTL(GH,"einstein::psiz");
  }
  /* if we have a negative index, this GF is not needed, 
     there for don't even look for it. when index positive,
     set flag Mstorage=1, dito for N */
  if (MIndex>=0)  { 
    Mlin = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,MIndex);
    Mstorage = 1;
  }
  if (NIndex>=0) {
    Nlin = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,NIndex);
    Nstorage = 1;
  }

  /* Get the workspace data pointer */
  wsp  = GetDataPtr_NextTL(GH,"ellpetsc::wsp");
  
  /* initialize the linear index lookup table, after it's 
     filled up (below), the -1 indicates a boundary */
  for (i=0;i<pEx->npoints;i++) wsp[i] = -1.0;

  /* Get myproc from the CCTK, get the gridspacing */
  myproc = PUGH_MyProc(GH);
  dx     = GH->cctk_delta_space[0];
  dy     = GH->cctk_delta_space[1];
  dz     = GH->cctk_delta_space[2];

  /* We fix the lower and upper boundary indices, that actually "active" in 
     the sense that they are no ghostzones: */
  imin=((pCon->neighbours[pughGH->myproc][XDM]<0) && !(octant) ? 1 : 
         GH->cctk_nghostzones[0]);
  imax=((pCon->neighbours[pughGH->myproc][XDP]<0) ? pEx->lnsize[0]-1 : 
         pEx->lnsize[0]-GH->cctk_nghostzones[0]);

  jmin=((pCon->neighbours[pughGH->myproc][YDM]<0) && !(octant) ? 1 : 
        GH->cctk_nghostzones[1]);
  jmax=((pCon->neighbours[pughGH->myproc][YDP]<0) ? pEx->lnsize[1]-1 : 
         pEx->lnsize[1]-GH->cctk_nghostzones[1]);
  
  kmin=((pCon->neighbours[pughGH->myproc][ZDM]<0) && !(octant) ? 1 : 
         GH->cctk_nghostzones[2]);
  kmax=((pCon->neighbours[pughGH->myproc][ZDP]<0) ? pEx->lnsize[2]-1 : 
         pEx->lnsize[2]-GH->cctk_nghostzones[2]);

  /* We need to get the global index of gridpoints (gps) owned on my proc. 
     For that we have to know how many gps are there before my processors
     (i<myproc), so we count them here (that's minus the ghostszones
     (we use PUGH's "rn" variables (number of gp on proc[#] in 
     direction [i]) and subtract the ghostzones if nec.) */

  for (i=0;i<myproc;i++) {
    
    nxs=pEx->rnsize[i][0];
    nxs=((pCon->neighbours[i][XDM]<0) && !(octant) ? nxs-1 : 
         nxs-GH->cctk_nghostzones[0]); 
    nxs=((pCon->neighbours[i][XDP]<0) ? nxs-1 : nxs-GH->cctk_nghostzones[0]);
    
    nys=pEx->rnsize[i][1];
    nys=((pCon->neighbours[i][YDM]<0) && !(octant) ? nys-1 : 
         nys-GH->cctk_nghostzones[1]);
    nys=((pCon->neighbours[i][YDP]<0) ? nys-1 : nys-GH->cctk_nghostzones[1]);
    
    nzs=pEx->rnsize[i][2];
    nzs=((pCon->neighbours[i][ZDM]<0) && !(octant) ? nzs-1 : 
         nzs-GH->cctk_nghostzones[2]);
    nzs=((pCon->neighbours[i][ZDP]<0) ? nzs-1 : nzs-GH->cctk_nghostzones[2]);    
    
    printf("PROC: %d  nxyzs %d %d %d \n",i,nxs,nys,nzs);
    startpoint += nxs*nys*nzs;
  }

#ifdef DEBUG 
  printf("STARTPOINT: %d \n",startpoint);
#endif 

  /* ...we save that as a start ...*/
  endpoint = startpoint;
    
  /* ...and continue running over our own region to get our endpoint */
  for (k=kmin;k<kmax;k++)
    for (j=jmin;j<jmax;j++)
      for (i=imin;i<imax;i++)
        wsp[DATINDEX(pEx,i,j,k)] = endpoint++;
  
  /* So now each point has a unique index of its own. If we
     do a sync that means each processor knows the indiced
     in the ghost zones (eg, on its neighbors) in a FD stencil
     of 1 */
  retcode = CCTK_SyncGroup(GH,"ellpetsc::petscworkspace");
  if (retcode<0) CCTK_WARN(1,"Synchronization failed\n");
  
  
  /* So woohoo. Now for each point in our ijk space, we have
     information about our row in the matrix (workspace->data[ijk])
     as well as the column for the stencil of the neighbors
     (workspace->data[DATINDEX(GH,i+1,j,k)] etc...). So onwards */

  nxs = pEx->nsize[0]-2;
  nys = pEx->nsize[1]-2;
  nzs = pEx->nsize[2]-2;

#ifdef DEBUG
  if (debug) {
    printf("nxyzs %d %d %d \n",nxs,nys,nzs);
    printf("lnxyz: %d %d %d \n",pEx->lnsize[0],pEx->lnsize[1],pEx->lnsize[2]);
  }
#endif

  /* Suck off boundaries... */
  rank = nxs*nys*nzs;
  
  
  /* Create the petsc matrix A and vectors x and b efficiently.
     
     Now for efficiency we have to be really careful here. By
     setting up the index array, we are abandoning the 19-way
     tri-diagonal system so we can lay out our matrices on the
     processors with the data. (One one proc we will still
     get 19 way tridiagonal). So we want each processor
     to own only part of the matrix/vector but we know exactly
     what it is, eg, from startpoint to endpoint-1 is on our
     local processor (that is, row-wise ; all columns are local).

     So we can use MatCreateMPIAIJ for exactly this, and
     VecCreateMPI for the vectors.
   */

  /* FIXME: perhaps only set up only on first iteration, this was a hack
     by PAUL, using some inofficical petsc code, check if this is 
     "official", yet */

  if (verbose) CCTK_INFO("Creating Matrices and Vectors ....");

  ierr = MatCreateMPIAIJ(pughGH->PUGH_COMM_WORLD,     
                         (endpoint-startpoint),   /* # of rows */
                         (endpoint-startpoint),   /* This is confusing */
                         rank,rank,               /* Matrix size */
                         19,PETSC_NULL,           /* Diagonal  */
                         19,PETSC_NULL,           /* Off diagonal */
                         &A[0]);                  /* The output  */
  CHKERRQ(ierr);
  ierr = VecCreateMPI(pughGH->PUGH_COMM_WORLD,(endpoint-startpoint),rank,&soln);
  CHKERRQ(ierr);
  ierr = VecCreateMPI(pughGH->PUGH_COMM_WORLD,(endpoint-startpoint),rank,&b);
  CHKERRQ(ierr);
 
  /* Compare the PETSc layout to Cactus, this better be a match */
  ierr = VecGetOwnershipRange(soln,&pvstart,&pvend);
  ierr = MatGetOwnershipRange(A[0],&pstart,&pend);
#ifdef DEBUG
  printf("CAC M-Layout: %d %d \n",startpoint, endpoint);
  printf("PET M-Layout: %d %d \n",pstart, pend);
  printf("PET V-Layout: %d %d \n",pvstart,pvend);
#endif
  if (pstart != startpoint && pend != endpoint) 
    CCTK_WARN(1,"WARNING: PETSC and data layouts differ! (why?)\n");

  /* Decide on the nabla form in PETSc: */
  if (CCTK_EQUALS(petsc_nablaform,"down")) {
    if (verbose) 
      CCTK_INFO("Forming nabla with lower g and finite difference of dg \n");
    nabla_form = 2;

  } 
  else 
    if  (CCTK_EQUALS(petsc_nablaform,"up")) {
      if (verbose) 
        CCTK_INFO("Forming nabla with upper g and finite difference of dg \n");
      nabla_form = 3;
      uxx3 = (CCTK_REAL*)malloc(pEx->npoints*sizeof(CCTK_REAL));
      uxy3 = (CCTK_REAL*)malloc(pEx->npoints*sizeof(CCTK_REAL));
      uxz3 = (CCTK_REAL*)malloc(pEx->npoints*sizeof(CCTK_REAL));
      uyy3 = (CCTK_REAL*)malloc(pEx->npoints*sizeof(CCTK_REAL));
      uyz3 = (CCTK_REAL*)malloc(pEx->npoints*sizeof(CCTK_REAL));
      uzz3 = (CCTK_REAL*)malloc(pEx->npoints*sizeof(CCTK_REAL));
      for (i=0;i<pEx->npoints;i++) {
        CCTK_REAL p12;
        det= -(SQR(gxz[i])*gyy[i]) + 
          2*gxy[i]*gxz[i]*gyz[i] - 
          gxx[i]*SQR(gyz[i])  -
          SQR(gxy[i])*gzz[i] + 
          gxx[i]*gyy[i]*gzz[i];
        
        if (conformal) {
          pm4 = 1./pow(psi[i],4.0);
          p12 = pow(psi[i],12.0);
        } else {
          pm4 = 1.0;
          p12 = 1.0;
        }
      
        /*invert metric. This is the conformal upper metric. */
        uxx3[i]=(-SQR(gyz[i]) + gyy[i]*gzz[i])/det*pm4;
        uxy3[i]=(gxz[i]*gyz[i] - gxy[i]*gzz[i])/det*pm4;
        uyy3[i]=(-SQR(gxz[i]) + gxx[i]*gzz[i])/det*pm4;
        uxz3[i]=(-gxz[i]*gyy[i] + gxy[i]*gyz[i])/det*pm4;
        uyz3[i]=(gxy[i]*gxz[i] - gxx[i]*gyz[i])/det*pm4;
        uzz3[i]=(-SQR(gxy[i]) + gxx[i]*gyy[i])/det*pm4;
        
        det = det*p12;
      
        /* Rescaling for the uppermetric solver */
        if (Mstorage) Mlin[i] = Mlin[i]*sqrt(det);
        if (Nstorage) Nlin[i] = Nlin[i]*sqrt(det);

        uxx3[i]=uxx3[i]/(2.*dx*dx)*sqrt(det);
        uyy3[i]=uyy3[i]/(2.*dy*dy)*sqrt(det);
        uzz3[i]=uzz3[i]/(2.*dz*dz)*sqrt(det);
        uxy3[i]=uxy3[i]/(4.*dx*dy)*sqrt(det);
        uxz3[i]=uxz3[i]/(4.*dx*dz)*sqrt(det);
        uyz3[i]=uyz3[i]/(4.*dy*dz)*sqrt(det);
      }
    } 
    else  CCTK_WARN(0,"Don't know how to form nabla!\n");
  
  if (verbose) 
    CCTK_INFO("Creating the coefficient matrix...");
  if (verbose && matnormalize) 
    CCTK_INFO ("...with diagonal renormalized to one");

  for (k=kmin;k<kmax;k++) {
    for (j=jmin;j<jmax;j++) {
      for (i=imin;i<imax;i++) {

        if (wsp[DATINDEX(pEx,i,j,k)] >= 0) {

          CCTK_REAL tdxgxx, tdxgxy, tdxgxz, tdxgyy, tdxgyz, tdxgzz;
          CCTK_REAL tdygxx, tdygxy, tdygxz, tdygyy, tdygyz, tdygzz;
          CCTK_REAL tdzgxx, tdzgxy, tdzgxz, tdzgyy, tdzgyz, tdzgzz;

          /* Set up indices */
          int ijk;              /* The data point for the array */
          int ig, jg, kg;       /* The position in global space */
          int I,J;              /* The col and row in the matrix */
          CCTK_REAL rhsval = 0;
          
          for (I=0;I<27;I++) a[I] = 0.0;
          
          /* these guys are easy */
          ijk = DATINDEX(pEx,i,j,k);               /* get linear index */
          ig  = i + GH->cctk_lbnd[0]; 
          jg  = j + GH->cctk_lbnd[1];
          kg  = k + GH->cctk_lbnd[2];
        
          /* Get the row we are working on */
          I = wsp[ijk];

          /* Setup Temporaries / Psi derivatives on psi */
          if (conformal) {
            pm4   = 1./pow(psi[ijk],4.0);
            psixp = psix[ijk];
            psiyp = psiy[ijk];
            psizp = psiz[ijk];
          } else {
            pm4   = 1.0;
            psixp = 0.0;
            psiyp = 0.0;
            psizp = 0.0;
          }
          if (nabla_form == 2) {
            /* Use finite differences of g for the d's */
            int ijkp, ijkm;
            
            /* X derivatives */
            ijkp = DATINDEX(pEx,i+1,j,k);
            ijkm = DATINDEX(pEx,i-1,j,k);
            
            tdxgxx = (gxx[ijkp] - gxx[ijkm])/(2.0*dx);
            tdxgxy = (gxy[ijkp] - gxy[ijkm])/(2.0*dx);
            tdxgxz = (gxz[ijkp] - gxz[ijkm])/(2.0*dx);
            tdxgyy = (gyy[ijkp] - gyy[ijkm])/(2.0*dx);
            tdxgyz = (gyz[ijkp] - gyz[ijkm])/(2.0*dx);
            tdxgzz = (gzz[ijkp] - gzz[ijkm])/(2.0*dx);
              
              
            /* Y derivatives */
            ijkp = DATINDEX(pEx,i,j+1,k);
            ijkm = DATINDEX(pEx,i,j-1,k);
            
            tdygxx = (gxx[ijkp] - gxx[ijkm])/(2.0*dy);
            tdygxy = (gxy[ijkp] - gxy[ijkm])/(2.0*dy);
            tdygxz = (gxz[ijkp] - gxz[ijkm])/(2.0*dy);
            tdygyy = (gyy[ijkp] - gyy[ijkm])/(2.0*dy);
            tdygyz = (gyz[ijkp] - gyz[ijkm])/(2.0*dy);
            tdygzz = (gzz[ijkp] - gzz[ijkm])/(2.0*dy);
            
            /* X derivatives */
            ijkp = DATINDEX(pEx,i,j,k+1);
            ijkm = DATINDEX(pEx,i,j,k-1);
            
            tdzgxx = (gxx[ijkp] - gxx[ijkm])/(2.0*dz);
            tdzgxy = (gxy[ijkp] - gxy[ijkm])/(2.0*dz);
            tdzgxz = (gxz[ijkp] - gxz[ijkm])/(2.0*dz);
            tdzgyy = (gyy[ijkp] - gyy[ijkm])/(2.0*dz);
            tdzgyz = (gyz[ijkp] - gyz[ijkm])/(2.0*dz);
            tdzgzz = (gzz[ijkp] - gzz[ijkm])/(2.0*dz);
            
            /* great ... so start hacking away at the coefficients.
               Form upper metric - compute determinant */
            det= -(SQR(gxz[ijk])*gyy[ijk]) + 
              2*gxy[ijk]*gxz[ijk]*gyz[ijk] - 
              gxx[ijk]*SQR(gyz[ijk])  -
              SQR(gxy[ijk])*gzz[ijk] + 
              gxx[ijk]*gyy[ijk]*gzz[ijk];
            
            /*invert metric. This is the conformal upper metric. */
            uxx=(-SQR(gyz[ijk]) + gyy[ijk]*gzz[ijk])/det;
            uxy=(gxz[ijk]*gyz[ijk] - gxy[ijk]*gzz[ijk])/det;
            uyy=(-SQR(gxz[ijk]) + gxx[ijk]*gzz[ijk])/det;
            uxz=(-gxz[ijk]*gyy[ijk] + gxy[ijk]*gyz[ijk])/det;
            uyz=(gxy[ijk]*gxz[ijk] - gxx[ijk]*gyz[ijk])/det;
            uzz=(-SQR(gxy[ijk]) + gxx[ijk]*gyy[ijk])/det;
            
            /* Coeff. Contributions from second derivative */
            
            /* X derivative */
            a(-1,0,0) =         pm4 * uxx / (dx*dx);
            a(0,0,0)  =  -two * pm4 * uxx / (dx*dx);
            a(1,0,0)  =         pm4 * uxx / (dx*dx);
            /* Y derivative */
            a(0,-1,0) =         pm4 * uyy / (dy*dy);
            a(0,0,0)  = a(0,0,0)  -  two * pm4 * uyy / (dy*dy);
            a(0,1,0)  =         pm4 * uyy / (dy*dy);
            /* Z derivative */
            a(0,0,-1) =         pm4 * uzz / (dz*dz);
            a(0,0,0)  = a(0,0,0)  -  two * pm4 * uzz / (dz*dz);
            a(0,0,1)  =         pm4 * uzz / (dz*dz);
            /* Mixed XY */
            a(1,1,0)  =   two * pm4 * uxy / (dx*dy);
            a(-1,-1,0)=   two * pm4 * uxy / (dx*dy);
            a(1,-1,0) =  -two * pm4 * uxy / (dx*dy);
            a(-1,1,0) =  -two * pm4 * uxy / (dx*dy);
            /* Mixed XZ */
            a(1,0,1)  =   two * pm4 * uxz / (dx*dz);
            a(-1,0,-1)=   two * pm4 * uxz / (dx*dz);
            a(1,0,-1) =  -two * pm4 * uxz / (dx*dz);
            a(-1,0,1) =  -two * pm4 * uxz / (dx*dz);
            /* Mixed YZ */
            a(0,1,1)  =   two * pm4 * uyz / (dz*dy);
            a(0,-1,-1)=   two * pm4 * uyz / (dz*dy);
            a(0,-1,1) =  -two * pm4 * uyz / (dz*dy);
            a(0,1,-1) =  -two * pm4 * uyz / (dz*dy);
            
            /*     Great so now form christoffels. Remember that
                   
                   G_kij = psi^4 (2 * (psi_j/psi g_ik + psi_i/psi g_jk - 
                   psi_k/psi g_ij)
                   + D_jik + D_ijk - D_kij)
                   
                   Since these are the DOWN christoffels, store them in d...
                   
                   NOTE however that since we will up these, we can drop the 
                   psi^4 here and psi^-4 from the up metric. */
            
            
            /*     These three have lots of cancelations */
            dxxx = (two * psixp * gxx[ijk] + tdxgxx);
            dxxy = (two * psiyp * gxx[ijk] + tdygxx);
            dxxz = (two * psizp * gxx[ijk] + tdzgxx);
            /* This one has a reduction of two identical terms */
            dxyy = (four * psiyp * gxy[ijk] -
                    two  * psixp * gyy[ijk] +
                    two  * tdygxy - tdxgyy);
            /* As does this one */
            dxzz = (four * psizp * gxz[ijk] -
                    two  * psixp * gzz[ijk] +
                    two  * tdzgxz - tdxgzz);
            /* And this one is completely general */
            dxyz = (two * psiyp * gxz[ijk] +
                    two * psizp * gxy[ijk] -
                    two * psixp * gyz[ijk] +
                    tdzgxy + tdygxz - tdxgyz);
            
            /* Now do it twice more without the explanations */
            dyyy = (two * psiyp * gyy[ijk] + tdygyy);
            dyxy = (two * psixp * gyy[ijk] + tdxgyy);
            dyyz = (two * psizp * gyy[ijk] + tdzgyy);
            dyxx = (four * psixp * gxy[ijk] -
                    two  * psiyp * gxx[ijk] +
                    two  * tdxgxy - tdygxx);
            dyzz = (four * psizp * gyz[ijk] -
                    two  * psiyp * gzz[ijk] +
                    two  * tdzgyz - tdygzz);
            dyxz = (two * psizp * gxy[ijk] +
                    two * psixp * gyz[ijk] -
                    two * psiyp * gxz[ijk] +
                    tdzgxy + tdxgyz - tdygxz);
            
            dzzz = (two * psizp * gzz[ijk] + tdzgzz);
            dzxz = (two * psixp * gzz[ijk] + tdxgzz);
            dzyz = (two * psiyp * gzz[ijk] + tdygzz);
            dzxx = (four * psixp * gxz[ijk] -
                    two  * psizp * gxx[ijk] +
                    two  * tdxgxz - tdzgxx);
            dzyy = (four * psiyp * gyz[ijk] -
                    two  * psizp * gyy[ijk] +
                    two  * tdygyz - tdzgyy);
            dzxy = (two * psiyp * gxz[ijk] +
                    two * psixp * gyz[ijk] -
                    two * psizp * gxy[ijk] +
                    tdxgyz + tdygxz - tdzgxy);
            
            /* And now raise the first index */
            Gxxx = uxx*dxxx + uxy*dyxx + uxz*dzxx;
            Gxxy = uxx*dxxy + uxy*dyxy + uxz*dzxy;
            Gxxz = uxx*dxxz + uxy*dyxz + uxz*dzxz;
            Gxyy = uxx*dxyy + uxy*dyyy + uxz*dzyy;
            Gxyz = uxx*dxyz + uxy*dyyz + uxz*dzyz;
            Gxzz = uxx*dxzz + uxy*dyzz + uxz*dzzz;
            
            Gyxx = uxy*dxxx + uyy*dyxx + uyz*dzxx;
            Gyxy = uxy*dxxy + uyy*dyxy + uyz*dzxy;
            Gyxz = uxy*dxxz + uyy*dyxz + uyz*dzxz;
            Gyyy = uxy*dxyy + uyy*dyyy + uyz*dzyy;
            Gyyz = uxy*dxyz + uyy*dyyz + uyz*dzyz;
            Gyzz = uxy*dxzz + uyy*dyzz + uyz*dzzz;
            
            Gzxx = uxz*dxxx + uyz*dyxx + uzz*dzxx;
            Gzxy = uxz*dxxy + uyz*dyxy + uzz*dzxy;
            Gzxz = uxz*dxxz + uyz*dyxz + uzz*dzxz;
            Gzyy = uxz*dxyy + uyz*dyyy + uzz*dzyy;
            Gzyz = uxz*dxyz + uyz*dyyz + uzz*dzyz;
            Gzzz = uxz*dxzz + uyz*dyzz + uzz*dzzz;
               

            /*     Great. So now start adding the summed contributions
                   from the first derivative. Note that these all have a
                   sign change since the term comes in - ... */
            
            /*  g^ij G ^x_ij */
            tmp = uxx * Gxxx + uyy * Gxyy + uzz * Gxzz +
              two * uxy * Gxxy +
              two * uxz * Gxxz + 
              two * uyz * Gxyz;
            a(1,0,0)  = a(1,0,0)  - pm4 * tmp / (two*dx);
            a(-1,0,0) = a(-1,0,0) + pm4 * tmp / (two*dx);
            
            /* g^ij G^y_ij */
            tmp = uxx * Gyxx + uyy * Gyyy + uzz * Gyzz +
              two * uxy * Gyxy +
              two * uxz * Gyxz + 
              two * uyz * Gyyz;
            a(0,1,0)  = a(0,1,0)  - pm4 * tmp / (two*dy);
            a(0,-1,0) = a(0,-1,0) + pm4 * tmp / (two*dy);
            
            /* g^ij G^z_ij */
            tmp = uxx * Gzxx + uyy * Gzyy + uzz * Gzzz +
              two * uxy * Gzxy +
              two * uxz * Gzxz + 
              two * uyz * Gzyz;
            a(0,0,1)  = a(0,0,1)  - pm4 * tmp / (two*dz);
            a(0,0,-1) = a(0,0,-1) + pm4 * tmp / (two*dz);
              
          } /* end if nable_form==2 */ 

          else { 
            /* nabla_form==3: Upper Metric Nabla Form */
            a(0,0,0) = -Uxx(i+1,j,k) -2.*Uxx(i,j,k) -Uxx(i-1,j,k) 
              -Uyy(i,j+1,k) -2.*Uyy(i,j,k) -Uyy(i,j-1,k)
              -Uzz(i,j,k+1) -2.*Uzz(i,j,k) -Uzz(i,j,k-1);
            
            /*$ae = uxx(i+1,j,k)+uxx(i,j,k)$*/
            a(1,0,0) = Uxx(i+1,j,k) + Uxx(i,j,k);
            /*$aw = uxx(i-1,j,k)+uxx(i,j,k)$*/
            a(-1,0,0) = Uxx(i-1,j,k)+Uxx(i,j,k);
                /*$an = uyy(i,j+1,k)+uyy(i,j,k)$*/              
            a(0,1,0) = Uyy(i,j+1,k)+Uyy(i,j,k);
            /*$as = uyy(i,j-1,k)+uyy(i,j,k)$*/              
            a(0,-1,0) = Uyy(i,j-1,k)+Uyy(i,j,k);
            /*$at = uzz(i,j,k+1)+uzz(i,j,k)$*/               
            a(0,0,1) = Uzz(i,j,k+1)+Uzz(i,j,k);               
            /*$ab = uzz(i,j,k-1)+uzz(i,j,k)$*/               
            a(0,0,-1) = Uzz(i,j,k-1)+Uzz(i,j,k);
            
            /*$ane = uxy(i,j+1,k)+uxy(i+1,j,k)$*/              
            a(1,1,0) = Uxy(i,j+1,k)+Uxy(i+1,j,k);
            /*$anw = - uxy(i-1,j,k)-uxy(i,j+1,k)$*/               
            a(-1,1,0) = - Uxy(i-1,j,k)-Uxy(i,j+1,k);
            /*$ase = - uxy(i+1,j,k)-uxy(i,j-1,k)$*/               
            a(1,-1,0) = - Uxy(i+1,j,k)-Uxy(i,j-1,k);
            /*$asw = uxy(i-1,j,k)+uxy(i,j-1,k)$*/               
            a(-1,-1,0) = Uxy(i-1,j,k)+Uxy(i,j-1,k);
            /*$ate = uxz(i,j,k+1)+uxz(i+1,j,k)$*/               
            a(1,0,1) = Uxz(i,j,k+1)+Uxz(i+1,j,k);
            /*$atw = - uxz(i-1,j,k)-uxz(i,j,k+1)$*/               
            a(-1,0,1) = - Uxz(i-1,j,k)-Uxz(i,j,k+1);
            /*$abe = - uxz(i+1,j,k)-uxz(i,j,k-1)$*/               
            a(1,0,-1) = - Uxz(i+1,j,k)-Uxz(i,j,k-1);
            /*$abw = uxz(i-1,j,k)+uxz(i,j,k-1)$*/               
            a(-1,0,-1) = Uxz(i-1,j,k)+Uxz(i,j,k-1);         
            /*$atn = uyz(i,j+1,k)+uyz(i,j,k+1)$*/               
            a(0,1,1) = Uyz(i,j+1,k)+Uyz(i,j,k+1);
            /*$ats = - uyz(i,j,k+1)-uyz(i,j-1,k)$*/               
            a(0,-1,1) = - Uyz(i,j,k+1)-Uyz(i,j-1,k);
            /*$abn = - uyz(i,j,k-1)-uyz(i,j+1,k)$*/               
            a(0,1,-1) = - Uyz(i,j,k-1)-Uyz(i,j+1,k);
            /*$asb = uyz(i,j,k-1)+uyz(i,j-1,k)$*/
            a(0,-1,-1) = Uyz(i,j,k-1)+Uyz(i,j-1,k);
          } /* end nabla_form=3 */

          /* M phi */
          if (Mstorage)
            a(0,0,0) = a(0,0,0) + Mlin[ijk];

          /* Great now set the values of the matrix. This is
             really painful due to the boundaries (here we force
             dirichlet).  */
          VecSetValues(soln,1,&I,&(ell_field[ijk]),INSERT_VALUES);
          
          /* Put in the octant boundary conditions.
           
             We do these by reflecting the -1 stencil if we are at a
             boundary at -1. That is, imagine the 1D laplace equation
             with the boundary condition a(0) = a(1). This means
             the point 1 stencil (which is our first stencil in
             the matrix) becomes
             
             a(0) + a(2) - 2 a(1) = rho(i) * deltax  ->
             a(2) - 2 a(1) + a(1) = rho(i) * deltax
             
             OK so think about this with a general stenci
             
             S_0 a_0 + S_1 a_1 + S_2 a_2 = rho_1 ->
             S_0 a_1 + S_1 a_1 + S_2 a_2 = rho_1 ->
             (S_0 + S_1) a_1 + S_2 a_2 = rho_1
             
             eg, S_0 -> 0 and S_1 -> S_1 + S_0
             
             Great, so implement this in 3D. It is a bit trickier,
             since we don't want to zero neighbors in the wrong
             direction, but not impossible.
             
            */
#ifdef DEBUG
          if (ijk==1918) {
            for (l=-1;l<=1;l++)
              for (m=-1;m<=1;m++)
                for (n=-1;n<=1;n++) printf(" (%d %d %d): %f \n",l,m,n,a(l,m,n));
            printf("\n");
          }
#endif

          if (octant)
            for (l=-1;l<=0;l++)
              for (m=-1;m<=0;m++)
                for (n=-1;n<=0;n++)
                  if (l*m*n == 0) 
                    if (wsp[DATINDEX(pEx,i+l,j+m,k+n)] < 0 &&
                        (ig == imin || jg == jmin || kg == kmin))  
                      {
                        /* We are on an inner boundary point, eg, 
                           at an inner face */
                        int ll,mm,nn;
                        /* Only zero the guys at the boundaries */
                        ll = (ig == imin ? 0 : l);
                        mm = (jg == jmin ? 0 : m);
                        nn = (kg == kmin ? 0 : n);
                        a(ll,mm,nn) += a(l,m,n);
                        a(l,m,n)     = 0.0;
                      }
      
          /* renormalize */
          if (matnormalize) {
            ac = a(0,0,0);
            for (J=0;J<27;J++) a[J] = a[J] / ac;
          } 
          else ac = 1;
          

          /* This is the new way-clever look. Note it relies
             heavily on the index array in the workspace and
             on multiple processors it will *NOT* make a
             19-way banded matrix. */

          for (l=-1;l<=1;l++)
            for (m=-1;m<=1;m++)
              for (n=-1;n<=1;n++) {
                if (l*m*n == 0) {       /* This is the 19 point ... if none are
                                         * zero, then we have no stencil here.
                                         */
                  if (wsp[DATINDEX(pEx,i+l,j+m,k+n)] < 0) {
                    /* This is a boundary. */
                    rhsval += a(l,m,n) * ell_field[DATINDEX(pEx,i+l,j+m,k+n)];
                  } 
                  else {
                    J = wsp[DATINDEX(pEx,i+l,j+m,k+n)];
                    ierr = MatSetValues(A[0],1,&I,1,&J,&(a(l,m,n)),INSERT_VALUES); 
                    CHKERRQ(ierr);
                  }
                }
              }

          if (Nstorage)
            rhsval = -rhsval - Nlin[ijk] / ac;

          ierr   = VecSetValues(b,1,&I,&rhsval,INSERT_VALUES);
          CHKERRQ(ierr);
          
        }
      }
    }
  }
  
  if (verbose) CCTK_INFO ("Assembling the vectors");
  ierr = MatAssemblyBegin(A[0],MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
  ierr = VecAssemblyBegin(soln);                    CHKERRQ(ierr);
  ierr = VecAssemblyBegin(b);                       CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A[0],MAT_FINAL_ASSEMBLY);   CHKERRQ(ierr);
  ierr = VecAssemblyEnd(soln);                      CHKERRQ(ierr);
  ierr = VecAssemblyEnd(b);                         CHKERRQ(ierr);
#if PETSC_VERSION_MAJOR < 3
  ierr = MatSetOption(A[0],MAT_NO_NEW_NONZERO_LOCATIONS); CHKERRQ(ierr);
#else
  ierr = MatSetOption(A[0],MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE); CHKERRQ(ierr);
#endif

  if (nabla_form == 3) {
    if (verbose)
        printf ("Freeing upper metric storage\n");
    free(uxx3);
    free(uxy3);
    free(uxz3);
    free(uyy3);
    free(uyz3);
    free(uzz3);
  }
  if (trips==0) 
  {
#if PETSC_VERSION_MAJOR < 2 || (PETSC_VERSION_MAJOR == 2 && PETSC_VERSION_MINOR == 0)
    OptionsSetValue("-ksp_monitor","");
#else
    PetscOptionsSetValue("-ksp_monitor","");
#endif
  }

  if (verbose) 
  {
    CCTK_INFO("CREATING SLES");
  }

  ierr = SLESCreate(pughGH->PUGH_COMM_WORLD,&sles);  CHKERRQ(ierr);
  
  
  /* 
     Set operators. Here the matrix that defines the linear system
     also serves as the preconditioning matrix. At a later date
     we can probably optimize this using SAME_NONZERO_PATTERN
     and a static trip-though flag (eg, on the second trip
     through do something different). Also we need to think about
     using A to precondition itself. Since I don't know what this
     means, we'll leave it for now.  */

  if (verbose) CCTK_INFO("CREATING SLES OPERATOR");
  ierr = SLESSetOperators(sles,A[0],A[0],DIFFERENT_NONZERO_PATTERN); CHKERRQ(ierr);

  /* Set linear solver defaults for this problem. Later this
     should be replaced/modified with appropriate parsing from the 
     parameter parser. For now it is not. These defaults are
     reasonable, I hope.  */
  if (verbose) CCTK_INFO("SLESGet KSP/PC");
  ierr = SLESGetKSP(sles,&ksp); CHKERRQ(ierr);
  ierr = SLESGetPC(sles,&pc);   CHKERRQ(ierr);
  
 /* Get the PC Type */
  if (CCTK_Equals(petsc_PC_type,"PCJACOBI")) 
    ierr = PCSetType(pc,PCJACOBI);
  else if (CCTK_Equals(petsc_PC_type,"PCBJACOBI"))
    ierr = PCSetType(pc,PCBJACOBI);
  else if (CCTK_Equals(petsc_PC_type,"PCICC"))
    ierr = PCSetType(pc,PCICC);
  else if (CCTK_Equals(petsc_PC_type,"PCILU"))
    ierr = PCSetType(pc,PCILU);
  else if (CCTK_Equals(petsc_PC_type,"PCASM"))
    ierr = PCSetType(pc,PCASM);
  else if (CCTK_Equals(petsc_PC_type,"PCLU"))
    ierr = PCSetType(pc,PCLU);
  else if (CCTK_Equals(petsc_PC_type,"PCNONE"))
    ierr = PCSetType(pc,PCNONE);
  else {
    CCTK_WARN(1,"Don't understand petsc_PC_type. Using PCNONE\n");
    ierr = PCSetType(pc,PCNONE);
  }
  CHKERRQ(ierr);

  
  /* Now the same thing for the KSP Type */
  if (CCTK_Equals(petsc_KSP_type,"KSPBCGS")) 
    ierr = KSPSetType(ksp,KSPBCGS); 
  else if (CCTK_Equals(petsc_KSP_type,"KSPRICHARDSON"))
    ierr = KSPSetType(ksp,KSPRICHARDSON);
  else if (CCTK_Equals(petsc_KSP_type,"KSPCHEBYCHEV"))
    ierr = KSPSetType(ksp,KSPCHEBYCHEV);
  else if (CCTK_Equals(petsc_KSP_type,"KSPCG"))
    ierr = KSPSetType(ksp,KSPCG);
  else if (CCTK_Equals(petsc_KSP_type,"KSPGMRES"))
    ierr = KSPSetType(ksp,KSPGMRES);
  else if (CCTK_Equals(petsc_KSP_type,"KSPCGS"))
    ierr = KSPSetType(ksp,KSPCGS);
  else if (CCTK_Equals(petsc_KSP_type,"KSPTFQMR"))
    ierr = KSPSetType(ksp,KSPTFQMR);
  else if (CCTK_Equals(petsc_KSP_type,"KSPTCQMR"))
    ierr = KSPSetType(ksp,KSPTCQMR);
  else if (CCTK_Equals(petsc_KSP_type,"KSPCR"))
    ierr = KSPSetType(ksp,KSPCR);
  else if (CCTK_Equals(petsc_KSP_type,"KSPLSQR"))
    ierr = KSPSetType(ksp,KSPLSQR);
  else {
    CCTK_WARN (1,"I don't understand petsc_KSP_type. Using BiCGSTAB\n");
    ierr = KSPSetType(ksp,KSPBCGS);
  }
  CHKERRQ(ierr);



 /* Set up tolerances */
  
  if (PetscTolStyle == ELLCONV_ABSOLUTE) {
    rtol = 1.0e-15; 
    atolerance = tolerance;
  } else if (PetscTolStyle == ELLCONV_RELATIVE) {
    rtol = tolerance; 
    atolerance = 1.0e-15;
  } else if (PetscTolStyle == ELLCONV_EITHER) {
    rtol = tolerance; 
    atolerance = tolerance;
  } else {
    printf("PETSC Solver: PetscTolStyle set incorrectly [%d]\n",
            PetscTolStyle);
  }
  
  ierr = KSPSetTolerances(ksp,rtol,atolerance,PETSC_DEFAULT,
                          PETSC_DEFAULT);
  CHKERRQ(ierr);


    /* We are warned in the manual that 

     The default technique for orthogonalization of the Hessenberg matrix
     in GMRES is the modified Gram-Schmidt method, which employs many
     VecDot() operations and can thus be slow in parallel. A fast approach
     is to use the unmodified Gram-Schmidt method, which can be set with

     ierr = KSPGMRESSetOrthogonalization(KSP ksp, 
        KSPGMRESUnmodifiedGramSchmidtOrthogonalization); 

     or the options database command
     -ksp_gmres_unmodifiedgramschmidt. Note that this algorithm is
     numerically unstable, but may deliver much better speed
     performance. One can also use unmodifed Gram-Schmidt with
     iterative refinement, by setting the orthogonalization routine,
     KSPGMRESIROrthog(), by using the command line option
     -ksp_gmres_irorthog.

     So this my not be a smart thing to do. But lets put it here 
     so we can turn it on or off later.

   */
  /*$ierr = KSPGMRESSetOrthogonalization(ksp, 
                KSPGMRESUnmodifiedGramSchmidtOrthogonalization); 
  CHKERRQ(ierr);$*/

  /* We also learn that  ...

     By default, KSP assumes an initial guess of zero by zeroing the
     initial value for the solution vector that is given. To use a
     nonzero initial guess, the user must call

     ierr = KSPSetInitialGuessNonzero(KSP ksp); 

   */
  if (verbose) CCTK_INFO("KSPSetInitialGuess\n");
#if PETSC_VERSION_MAJOR < 2 || (PETSC_VERSION_MAJOR == 2 && PETSC_VERSION_MINOR <= 0 && PETSC_VERSION_SUBMINOR < 5)
  ierr = KSPSetInitialGuessNonzero(ksp); CHKERRQ(ierr);
#else
  ierr = KSPSetInitialGuessNonzero(ksp, PETSC_TRUE); CHKERRQ(ierr);
#endif
  
  /* 
    Set runtime options. Since we don't use PETSC runtime options
    but rather use the CACTUS parameter parser, we do this before
    we parse things out. But that may not be such a good idea.
    So lets put it here.
  */
  ierr = SLESSetFromOptions(sles);   CHKERRQ(ierr);
    

  /* OK so finally we are able to ... */

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
                      Solve the linear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  if (verbose) CCTK_INFO("SLES solve...");
  ierr = SLESSolve(sles,b,soln,&its); CHKERRQ(ierr); 
  
  /* Here we can form a "res = Ax  - b" and find its norm to get
     an idea of how well we've converged. Put this in later
     but we can do it using MatMultAdd() after we flip the sign
     on b with VecScale() (into res, a new vector, then find the
     norm of res with VecNorm()
  */
  
  /* Now since we now have local layout, we can just get the values
     from the soln vector now matter how many processors we are
     on (eg, the VecCreateMPI has made the solution local) */

  VecGetArray(soln,&values); 
  for (k=kmin;k<kmax;k++) {
    for (j=jmin;j<jmax;j++) {
      for (i=imin;i<imax;i++) {
        /* Set up indices */
        int ijk;                /* The data point for the array */
        int I;                  /* The col in the matrix */

        /* these guys are easy */
        ijk = DATINDEX(pEx,i,j,k);
        if (wsp[ijk] >= 0) {
         
          /* Now this one. "Fortran-order" the matrix. But remember
             we have stripped off the ghost zones. Hence ig-1 and nxs...
          */
          I =wsp[ijk]-startpoint;
          ell_field[ijk] = values[I];
        }
      }
    }
  }
  
  VecRestoreArray(soln,&values);   

  /* Sync var in CCTK speak. */ 
  CCTK_SyncGroup(GH,"ellpetsc::petscworkspace");
  
  /* And finally free up the matrix memory   FIXME 
  ierr = MatReleaseValuesMemory(A); CHKERRQ(ierr); */

  /* This code is not used anymore */
  if (verbose) CCTK_INFO("Destroying Matrices");
  ierr = SLESDestroy(sles); CHKERRQ(ierr);
  ierr = VecDestroy(soln);  CHKERRQ(ierr);
  ierr = VecDestroy(b);     CHKERRQ(ierr);  
  ierr = MatDestroy(A[0]);  CHKERRQ(ierr);
  free(A);
    
  /*$PetscFinalize();$*/

  if (verbose) CCTK_INFO("LEAVING ELLPETSC");
  
  return (0);
}