aboutsummaryrefslogtreecommitdiff
path: root/src/EHFinder_Init.F90
blob: 10888d8432669167900c15141283e5fdbe0fd02f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
! Initialisation of the level set function and various other things.
! $Header$

#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"
#include "cctk_Functions.h"

subroutine EHFinder_Init_F(CCTK_ARGUMENTS)

  use EHFinder_mod

  implicit none

  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_FUNCTIONS

  CCTK_INT :: i, j, k, l, status
  CCTK_REAL, dimension(3) :: xp, xpt
  CCTK_REAL, dimension(3,3) :: txyz
  CCTK_REAL :: cosa, sina, cosb, sinb, cosc, sinc
  CCTK_REAL :: last_time
  CCTK_REAL :: theta, dtheta, thetamin, thetamax, r_el
  CCTK_REAL :: phi, dphi, phimin, phimax
  CCTK_REAL :: costh, sinth, cosph, sinph
  CCTK_INT, dimension(1) :: lsh, lbnd
  CCTK_INT, dimension(2) :: lsh2, lbnd2

! Get the size of the local grid.
  nx = cctk_lsh(1)
  ny = cctk_lsh(2)
  nz = cctk_lsh(3)

! Initialize the last_time varible. Note the parameters should be
! chosen to be consistent with the run producing the numerical data.
! F.ex. if dt was 0.1 but the data was only stored every 4 iterations, the
! parameters should be chosen so that dt now is 0.4.
  last_time = abs(cctk_delta_time) * ( last_iteration_number + &
                cheat_iterations ) / saved_iteration_every

  if ( cheat == 1 ) then
  last_time = abs(cctk_delta_time) * ( last_iteration_number + &
                cheat_iterations ) / saved_iteration_every
    cctk_iteration = -cheat_iterations
  else
    last_time = abs(cctk_delta_time) * last_iteration_number &
                                     / saved_iteration_every
  end if
  cctk_time = last_time

! Allocate the logical array containing the flag determining if the
! corresponding level set should be re-initialized.

  if ( allocated(re_init_this_level_set) ) then
    deallocate ( re_init_this_level_set )
  end if
  allocate ( re_init_this_level_set(eh_number_level_sets) )
  if ( allocated(re_initialize_undone) ) then
    deallocate ( re_initialize_undone )
  end if
  allocate ( re_initialize_undone(eh_number_level_sets) )

  if ( evolve_generators .gt. 0 ) then

    if ( CCTK_EQUALS( domain, 'full' ) ) then
      thetamin = zero; thetamax = pi
      phimin = zero; phimax = 2*pi
    else if ( CCTK_EQUALS( domain, 'bitant') ) then
      if ( CCTK_EQUALS( bitant_plane, 'xy' ) ) then
        thetamin = zero; thetamax = half * pi
        phimin = zero; phimax = 2*pi
      else  if ( CCTK_EQUALS( bitant_plane, 'xz' ) ) then
        thetamin = zero; thetamax = pi
        phimin = zero; phimax = pi
      else
        thetamin = zero; thetamax = pi
        phimin = -half * pi; phimax = half * pi
      end if
    else if ( CCTK_EQUALS( domain, 'quadrant' ) ) then
      if ( CCTK_EQUALS( quadrant_direction, 'x' ) ) then
        thetamin = zero; thetamax = half * pi
        phimin = zero; phimax = pi
      else if ( CCTK_EQUALS( quadrant_direction, 'y' ) ) then
        thetamin = zero; thetamax = half * pi
        phimin = -half * pi; phimax = half * pi
      else
        thetamin = zero; thetamax = pi
        phimin = zero; phimax = half * pi
      end if
    else if ( CCTK_EQUALS( domain, 'octant' ) ) then
      thetamin = zero; thetamax = half * pi
      phimin = zero; phimax = half * pi
    end if
                   
    if ( CCTK_EQUALS( generator_distribution, 'line' ) ) then

      call CCTK_GrouplbndGN ( status, cctkGH, 1, lbnd, 'ehfinder::xg' )
      if ( status .lt. 0 ) then
        call CCTK_WARN ( 0, 'cannot get lower bounds for generator arrays' )
      end if
      call CCTK_GrouplshGN ( status, cctkGH, 1, lsh, 'ehfinder::xg' )
      if ( status .lt. 0 ) then
        call CCTK_WARN ( 0, 'cannot get local size for generator arrays' )
      end if

      if ( number_of_generators .eq. 1 ) then
        theta = half * ( thetamax - thetamin ) + thetamin
      else
        dtheta = ( thetamax - thetamin ) / ( number_of_generators - 1 )
      end if

    else if ( CCTK_EQUALS( generator_distribution, '2D array' ) ) then

      call CCTK_GrouplbndGN ( status, cctkGH, 2, lbnd2, 'ehfinder::xg2' )
      if ( status .lt. 0 ) then
        call CCTK_WARN ( 0, 'cannot get lower bounds for generator arrays' )
      end if
      call CCTK_GrouplshGN ( status, cctkGH, 2, lsh2, 'ehfinder::xg2' )
      if ( status .lt. 0 ) then
        call CCTK_WARN ( 0, 'cannot get local size for generator arrays' )
      end if

      if ( number_of_generators_theta .eq. 1 ) then
        theta = half * ( thetamax - thetamin ) + thetamin
      else
        dtheta = ( thetamax - thetamin ) / ( number_of_generators_theta )
      end if

      if ( number_of_generators_phi .eq. 1 ) then
        phi = half * ( phimax - phimin ) + phimin
      else
        dphi = ( phimax - phimin ) / ( number_of_generators_phi )
      end if

    end if
  end if

  do l = 1, eh_number_level_sets

!   If a sphere is requested...
    if ( CCTK_EQUALS( initial_f(l), 'sphere' ) ) then

!     Set up a sphere of radius initial_rad and translated 
!     (translate_x,translate_y,translate_z) away from the origin.
      f(:,:,:,l) = sqrt( ( x - translate_x(l) )**2 + &
                         ( y - translate_y(l) )**2 + &
                         ( z - translate_z(l) )**2 ) - initial_rad(l)
      if ( evolve_generators .gt. 0 ) then
        if ( CCTK_EQUALS( generator_distribution, 'line' ) ) then
          do i = 1, lsh(1)
            theta = thetamin + dtheta * ( i + lbnd(1) - 1 ) + half * dtheta
            xg(i,l) = initial_rad(l) * sin(theta) + translate_x(l)
            yg(i,l) = translate_y(l)
            zg(i,l) = initial_rad(l) * cos(theta) + translate_z(l)
          end do
        else if ( CCTK_EQUALS( generator_distribution, '2D array' ) ) then
          do j = 1, lsh2(2)
            phi = phimin + dphi * ( j + lbnd2(2) - 1 ) + half * dphi
            cosph = cos(phi); sinph = sin(phi)
            do i = 1, lsh2(1)
              theta = thetamin + dtheta * ( i + lbnd2(1) - 1 )
              costh = cos(theta); sinth = sin(theta)
              xg2(i,j,l) = initial_rad(l) * sinth * cosph + translate_x(l)
              yg2(i,j,l) = initial_rad(l) * sinth * sinph + translate_x(l)
              zg2(i,j,l) = initial_rad(l) * costh + translate_z(l)
            end do
          end do
        end if
      end if
    end if

!   If an ellipsoid is requested...
    if ( CCTK_EQUALS( initial_f(l), 'ellipsoid' ) ) then

!     Calculate sines and cosines of the rotation parameters.
      cosa = cos(rotation_alpha(l))
      sina = sin(rotation_alpha(l))
      cosb = cos(rotation_beta(l))
      sinb = sin(rotation_beta(l))
      cosc = cos(rotation_gamma(l))
      sinc = sin(rotation_gamma(l))

!     Set up the rotation matrix. The order is alpha around the z-axis,
!     beta around the y-axis and finally gamma around the x-axis.
      txyz(1,1) = cosa * cosb
      txyz(1,2) = sina * cosb
      txyz(1,3) = -sinb
      txyz(2,1) = cosa * sinb * sinc - sina * cosc
      txyz(2,2) = sina * sinb * sinc + cosa * cosc
      txyz(2,3) = cosb * sinc
      txyz(3,1) = cosa * sinb * cosc + sina * sinc
      txyz(3,2) = sina * sinb * cosc - cosa * sinc
      txyz(3,3) = cosb * cosc

!     Apply the rotations and translation for all points on the grid.
!     Even though at first glance it looks like the translation is done
!     first, the opposite is actually true.
      do k = 1, nz
        do j = 1, ny
          do i = 1, nx
            xp(1) = x(i,j,k) - translate_x(l)
            xp(2) = y(i,j,k) - translate_y(l)
            xp(3) = z(i,j,k) - translate_z(l)
            xpt = matmul ( txyz, xp )
            f(i,j,k,l) = sqrt( xpt(1)**2 / initial_a(l)**2 + &
                             xpt(2)**2 / initial_b(l)**2 + &
                             xpt(3)**2 / initial_c(l)**2) - 1.0
          end do
        end do
      end do

      if ( evolve_generators .gt. 0 ) then
        if ( CCTK_EQUALS( generator_distribution, 'line' ) ) then
          do i = 1, lsh(1)
            theta = thetamin + dtheta * ( i + lbnd(1) - 1 )
            costh = cos(theta); sinth = sin(theta)
            r_el = sqrt ( one / ( sinth**2 / initial_a(l)**2 + &
                           costh**2 / initial_c(l)**2 ) )
            xp(1) = r_el * sinth + translate_x(l)
            xp(2) = translate_y(l)
            xp(3) = r_el * costh + translate_z(l)
            xpt = matmul ( txyz, xp )
            xg(i,l) = xpt(1)
            yg(i,l) = xpt(2)
            zg(i,l) = xpt(3)
          end do
        else if ( CCTK_EQUALS( generator_distribution, '2D array' ) ) then
          do j = 1, lsh2(2)
            phi = phimin + dphi * ( j + lbnd2(2) - 1 ) + half * dphi
            cosph = cos(phi); sinph = sin(phi)
            do i = 1, lsh2(1)
              theta = thetamin + dtheta * ( i + lbnd2(1) - 1 ) + half * dtheta
              costh = cos(theta); sinth = sin(theta)
              r_el = sqrt ( one / &
                            ( sinth**2*cosph**2 / initial_a(l)**2 + &
                              sinth**2*sinph**2 / initial_b(l)**2 + &
                              costh**2 / initial_c(l)**2 ) )
              xp(1) = r_el * sinth * cosph + translate_x(l)
              xp(2) = r_el * sinth * sinph + translate_y(l)
              xp(3) = r_el * costh + translate_z(l)
              xpt = matmul ( txyz, xp )
              xg2(i,j,l) = xpt(1)
              yg2(i,j,l) = xpt(2)
              zg2(i,j,l) = xpt(3) 
            end do
          end do
!          print*,xg2
!          print*
!          print*,yg2
!          print*
!          print*,zg2
!          stop
        end if
      end if
    end if

!   if an ovaloid of Cassini is requested...
    if ( CCTK_EQUALS( initial_f(l), 'cassini' ) ) then
      f(:,:,:,l) = (x**2+y**2+z**2)**2 + cas_a(l)**4 - &
            2*cas_a(l)**2*(x**2 - (y**2+z**2)) - cas_b(l)**4
    end if
  end do

! Initialise the internal mask.
  eh_mask = 0

  return
end subroutine EHFinder_Init_F

subroutine EHFinder_Init(CCTK_ARGUMENTS)

  use EHFinder_mod

  implicit none

  DECLARE_CCTK_PARAMETERS
  DECLARE_CCTK_ARGUMENTS
  DECLARE_CCTK_FUNCTIONS

! Find the maximal grid spacing.
  delta = max ( CCTK_DELTA_SPACE(1), CCTK_DELTA_SPACE(2), CCTK_DELTA_SPACE(3) )

! Set up the value used in interiour inactive cells.
  ex_value = - ( one + shell_width ) * delta 

! Get handles for various reduction operations.
  call CCTK_ReductionArrayHandle ( max_handle, 'maximum' )
  if ( max_handle .lt. 0 ) then
    call CCTK_WARN(0,'Could not obtain a handle for maximum reduction')
  end if
  call CCTK_ReductionArrayHandle ( min_handle, 'minimum' )
  if ( min_handle .lt. 0 ) then
    call CCTK_WARN(0,'Could not obtain a handle for minimum reduction')
  end if
  call CCTK_ReductionArrayHandle ( sum_handle, 'sum' )
  if ( sum_handle .lt. 0 ) then
    call CCTK_WARN(0,'Could not obtain a handle for sum reduction')
  end if

end subroutine EHFinder_Init