aboutsummaryrefslogtreecommitdiff
path: root/src/interp3.F
blob: 0bbdf90dbd1a3c5f644ba77bd73fbab2b0dfd2ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
c /*@@
c   @routine    interp3
c   @date       Fri Feb 14 08:46:53 1997
c   @author     Ryoji Takahashi
c   @desc 
c      Interpolates from 3D data var with coordinates x, y, and z and
c      sizes nx , ny, and nz onto 1D data out with position outx, outy
c      ,and outz nout points.
c      <p>
c      This has linear, quadratic and cubic interpolators in it.
c      Or will one day very soon.
c   @enddesc 
c   @calls     
c   @calledby   numerical_nonaxi
c@@*/

      subroutine interp3(dat,x,y,z,nx,ny,nz,out,outx,outy,outz,nout
     $     ,order)
      implicit none 
      integer nx,ny,nz,nout
      real*8 dat(nx,ny,nz), x(nx), y(ny), z(nz)
      real*8 out(nout),outx(nout),outy(nout),outz(nout)
      integer order
c Interpolation goes from ibelow to ibelow+[1,2,3] depending on order
      integer i,j,k,l,m,ibelow,jbelow,kbelow,pt
      real*8 xsym,ysym,zsym,findx,findy,findz,frac
      real*8 ydir(order+1)
      real*8 zdir(order+1)
      real*8 f(4), fp(4,4), fl(4)
      real*8 dbh_linear, dbh_quad, dbh_cubic
      real*8 dx, dy, dz, PI
      integer twobhjsad

      pi = 4.0d0*atan(1.0d0)
      
      dx = x(2) - x(1)
      dy = y(2) - y(1)
      dz = z(2) - z(1)
      
c Loop over all out points
      do pt=1,nout
         zsym = 1.0D0
         ysym = 1.0D0
         xsym = 1.0D0
c Check bounds
         findx = outx(pt)
         if (findx .lt. x(1)) then 
            write (*,*) "Below inner bound at ",pt,outx(pt)
            STOP
         endif
         if (findx .gt. x(nx)) then
            write (*,*) "Above x bounds at ",pt,outx(pt),x(nx)
            STOP
         endif
         findy = outy(pt)
         if (findy .lt. y(1)) then 
            write (*,*) "Below  y inner bound at ",pt,outy(pt)
            STOP
         endif
         if (findy .gt. y(ny)) then 
            write (*,*) "Below  y inner bound at ",pt,outy(pt)
            STOP
         endif
         findz = outz(pt)+pi
         if (findz .lt. z(1)) then 
            write (*,*) "Below  z inner bound at ",pt,outz(pt)
            STOP
         endif
         if (findz .gt. z(nz)) then 
            write (*,*) "Below  z inner bound at ",pt,outz(pt)
            STOP
         endif

c Locate ourselves in i,j space
c         do i=1,nx
c            if (x(i) .lt. findx) then
c               ibelow = i
c            endif
c         enddo
c     Assume a regular grid
         ibelow = (findx-x(1))/dx+1

         if (order .eq. 3 .and. ibelow .gt. 1) then
            ibelow = ibelow - 1
         endif
         if (ibelow + order .gt. nx) then
            ibelow = nx - order
         endif

c         do i=1,ny
c            if (y(i) .lt. findy) then
c     jbelow = i
c     endif
c         enddo
c     Assume a regular grid
         jbelow = (findy-y(1))/dy+1
         if (order .eq. 3 .and. jbelow .gt. 1) then
            jbelow = jbelow - 1
         endif
         if (jbelow + order .gt. ny) then
            jbelow = ny - order
         endif

c         do i=1,nz
c            if (z(i) .lt. findz) then
c               kbelow = i
c            endif
c         enddo
c     Assume a regular grid
         kbelow = (findz-z(1))/dz+1
         if (order .eq. 3 .and. kbelow .gt. 1) then
            kbelow = kbelow - 1
         endif
         if (kbelow + order .gt. nz) then
            kbelow = nz - order
         endif
         
c     write (*,*) "PT :",findx,findy
c     write (*,*) "SYM:",sym
c     write (*,*) "BOUND X ",ibelow,x(ibelow),x(ibelow+1)
c     write (*,*) "BOUND Y ",jbelow,y(jbelow),y(jbelow+1)
c     write (*,*) "BOUND z ",kbelow,z(kbelow),z(kbelow+1)
         
c     So do the interpolation
         if (order .eq. 1) then 
c     Interp in the x direction
!            frac = (findx-x(ibelow))/(x(ibelow+1)-x(ibelow))
            do l = 1,2
               do m = 1,2
                  f(1) = dat(ibelow,jbelow+l-1,kbelow+m-1)
                  f(2) = dat(ibelow+1,jbelow+l-1,kbelow+m-1)
                  fp(l,m) = dbh_linear(f,x(ibelow),dx,findx)
               enddo
            enddo
c     Now take our 2x2 plane and interp to the center of both
c     in the y direction
!            frac = (findy-y(jbelow))/(y(jbelow+1)-y(jbelow))
            do m = 1,2
               f(1) = fp(1,m)
               f(2) = fp(2,m)
               fl(m) = dbh_linear(f,y(jbelow),dy,findy)
            enddo
c     And finally, interp in the z direction
            out(pt) = xsym * ysym * zsym * 
     $           dbh_linear(fl,z(kbelow),dz,findz)
         else if (order .eq. 2) then
c     Load up for calls to poly2inter
            do l=1,3
               do m=1,3
                  f(1) = dat(ibelow,jbelow+l-1,kbelow+m-1)
                  f(2) = dat(ibelow+1,jbelow+l-1,kbelow+m-1)
                  f(3) = dat(ibelow+2,jbelow+l-1,kbelow+m-1)
                  fp(l,m) = dbh_quad(f,x(ibelow),dx,findx)
               enddo
            enddo
c     Now take our 2x2 plane and interp to the center of both
c     in the y direction
            do m=1,3
               f(1) = fp(1,m)
               f(2) = fp(2,m)
               f(3) = fp(3,m)
               fl(m) = dbh_quad(f,y(jbelow),dy,findy)
            enddo
c     And finally, interp in the z direction
            out(pt) = xsym * ysym * zsym *
     $           dbh_quad(fl,z(kbelow),dz,findz)
         else if (order .eq. 3) then
c     Load up for calls to cubic
            do l=1,4
               do m=1,4
                  f(1) = dat(ibelow,jbelow+l-1,kbelow+m-1)
                  f(2) = dat(ibelow+1,jbelow+l-1,kbelow+m-1)
                  f(3) = dat(ibelow+2,jbelow+l-1,kbelow+m-1)
                  f(4) = dat(ibelow+3,jbelow+l-1,kbelow+m-1)
                  fp(l,m) = dbh_cubic(f,x(ibelow),dx,findx)
               enddo
            enddo
c     Now take our 2x2 plane and interp to the center of both
c     in the y direction
            do m=1,4
               f(1) = fp(1,m)
               f(2) = fp(2,m)
               f(3) = fp(3,m)
               f(4) = fp(4,m)
               fl(m) = dbh_cubic(f,y(jbelow),dy,findz)
            enddo
c     And finally, interp in the z direction
            out(pt) = xsym * ysym * zsym * 
     $           dbh_cubic(fl,z(kbelow),dz,findz)
         else
            write (*,*) "ORDER set wrong in interp3d",order
            stop
         endif

      enddo
      return
      end

      real*8 function dbh_linear(f, x0, dx, findx)
      implicit none
      real*8 f(2),x0,dx,findx
      real*8 frac

      frac = (findx-x0)/dx
      dbh_linear = (frac)*f(2) + (1.0-frac)*f(1)

      return
      end

      real*8 function dbh_quad(f, x0, dx, findx)
      implicit none
      real*8 f(3),x0, dx, findx, dbh_quad
      real*8 f0,f1,f2
      real*8 a,b,c, dx2, x02, o2dx2
c Mathematica tells us
c     -  List(List(Rule(c,(2*dx**2*f0 + 3*dx*f0*x0 - 4*dx*f1*x0 
c     -        + dx*f2*x0 +  f0*x0**2 - 2*f1*x0**2 + f2*x0**2)
c     -        /(2*dx**2)), Rule(b,(-3*dx*f0 + 4*dx*f1 - dx*f2 - 2*f0*x0 
c     -        + 4*f1*x0 - 2*f2*x0)/(2*dx**2)),Rule(a,(f0 - 2*f1 + 
c     -        f2)/(2*dx**2))))

	f0 = f(1)
	f1 = f(2)
	f2 = f(3)
        dx2 = dx**2
        x02 = x0**2
        o2dx2 = 1.0D0/(2.0D0*dx2)

      c = (2.0D0*dx2*f0 + dx*x0*(3.0D0*f0 - 4.0D0*f1 + f2) + 
     $       x02*(f0 - 2.0D0*f1 + f2))*o2dx2
      b = (dx * (-3.0D0*f0 + 4.0D0*f1 - f2) + x0 * (- 2.0D0*f0 + 
     $     4.0D0*f1 - 2.0D0*f2))*o2dx2

      a = (f0 - 2.0D0*f1 + f2)*o2dx2

      dbh_quad = a*findx**2 + b*findx + c

      end


      real*8 function dbh_cubic(f, x0, dx, findx)
      implicit none
      real*8 a,b,c,d,dbh_cubic
      real*8 f(4),x0,dx,findx

      a = -(f(1)-3.0*f(2)+3.0*f(3)-f(4)) / (6.0*(dx**3))
      
      b = (f(1)-2.0*f(2)+f(3))/(2.0*(dx**2)) +
     $     (f(1)-3.0*f(2)+3.0*f(3)-f(4))*(dx+x0)/(2.0*(dx**3))
      
      c = ((dx**2)*(-11.0*f(1) + 18.0*f(2) -  9.0*f(3) +  2.0*f(4)) +
     $     dx*x0*  (-12.0*f(1) + 30.0*f(2) - 24.0*f(3) +  6.0*f(4)) +
     $     (x0**2)*( -3.0*f(1) +  9.0*f(2) -  9.0*f(3) +  3.0*f(4))) /
     $     (6.0*(dx**3))
      
      d = ((dx**3)*   (  6.0*f(1) ) +
     $     (dx**2)*x0*( 11.0*f(1) - 18.0*f(2) +  9.0*f(3) -  2.0*f(4)) +
     $     (x0**2)*dx*(  6.0*f(1) - 15.0*f(2) + 12.0*f(3) -  3.0*f(4)) +
     $     (x0**3)*   (  1.0*f(1) -  3.0*f(2) +  3.0*f(3) -  1.0*f(4)))/
     $     (6.0*(dx**3))
         
      dbh_cubic = ((a*findx + b)*findx + c)*findx + d
      return 
      end