aboutsummaryrefslogtreecommitdiff
path: root/src/Cartoon2DBC.c
blob: be5fb9e83a244e5b569b2435fab54c8aa0b6ed4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*@@
   @file      Cartoon2DBC.c
   @date      Thu Nov  4 13:35:00 MET 1999
   @author    Sai Iyer
   @desc 
              Apply Cartoon2D boundary conditions
              An implementation of Steve Brandt's idea for doing
              axisymmetry with 3d stencils.
              Cactus 4 version of Bernd Bruegmann's code.             
   @enddesc
 @@*/

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_FortranString.h"

#include "Cartoon2D_tensors.h"

static const char *rcsid = "$Id$";

CCTK_FILEVERSION(BetaThorns_Cartoon2D_Cartoon2DBC_c);

int BndCartoon2DGN(const cGH *GH, int tensortype, const char *group);
int BndCartoon2DVN(const cGH *GH, int tensortype, const char *var);
int BndCartoon2DVI(const cGH *GH, int tensortype, int prolongtype, int vi);
static CCTK_REAL Cartoon2DInterp(const cGH *GH, CCTK_REAL *f, int i, int di,
                             int ijk, CCTK_REAL x);
static CCTK_REAL Cartoon2DInterp_ENO(const cGH *cctkGH, 
                                    CCTK_REAL *f, int i, int di, 
                                    int ijk, CCTK_REAL x);
CCTK_REAL interpolate_local(int order, CCTK_REAL x0, CCTK_REAL dx, 
			 CCTK_REAL y[], CCTK_REAL x);
CCTK_REAL interpolate_eno(CCTK_REAL x0, CCTK_REAL dx,
                          CCTK_REAL y[], CCTK_REAL x);
void CCTK_FCALL CCTK_FNAME(BndCartoon2DVI)(int *retval, const cGH **GH, 
                int *tensortype, int *vi);
void CCTK_FCALL CCTK_FNAME(BndCartoon2DVN)(int *retval, const cGH **GH,
                int *tensortype, ONE_FORTSTRING_ARG);
void CCTK_FCALL CCTK_FNAME(BndCartoon2DGN)
                          (int *retval, const cGH **GH, int *tensortype, ONE_FORTSTRING_ARG);


/* set boundaries of a grid tensor assuming axisymmetry 
   - handles lower boundary in x
   - does not touch other boundaries
   - coordinates and rotation coefficients are independent of z and should
     be precomputed
   - this is also true for the constants in interpolator, but this may 
     be too messy
   - minimizes conceptual warpage, not computationally optimized
*/
/* uses rotation matrix and its inverse as linear transformation on
   arbitrary tensor indices -- I consider this a good compromise
   between doing index loops versus using explicit formulas in
   cos(phi) etc with messy signs 
*/

/* BndCartoon2DVI is called only on the first variable of a group.  It
   then is automatically applied to the remaining variables in the
   group, using the tensortype argument to determine how many there
   are and how to treat them. */

int BndCartoon2DVI(const cGH *cctkGH, int tensortype, int prolongtype, int vi)

{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  /*** FIXME: can CCTK_SyncGroup() have a 'const cGH *' parameter ?? ***/
  union
  {
    const cGH *const_ptr;
    cGH *non_const_ptr;
  } GH_fake_const;

  char * groupname;

  int i, j, k, di, dj, ijk;
  int jj, n, s;
  int lnx, lnz, ny;
  int gi, var0;
  int n_vars;
  int timelevel;
  CCTK_REAL x, y, rho;
  CCTK_REAL lx0, dx0, dy0;
  CCTK_REAL rxx, rxy, ryx, ryy;
  CCTK_REAL sxx, sxy, syx, syy;
  CCTK_REAL f[100], fx, fy, fz, fxx, fxy, fxz, fyy, fyz, fzz;
  CCTK_REAL *t, *tx, *ty, *tz, *txx, *txy, *txz, *tyy, *tyz, *tzz;


  gi = CCTK_GroupIndexFromVarI (vi);
  assert (gi >= 0);
  n_vars = CCTK_NumVarsInGroupI (gi);
  assert (n_vars > 0);
  var0 = CCTK_FirstVarIndexI (gi);
  assert (var0 >= 0);

  if (n_vars > 100)
  {
    groupname = CCTK_GroupName (gi);
    CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                "Group \"%s\" has more than 100 variables -- cannot apply Cartoon boundary condition",
                groupname);
    free (groupname);
    return -1;
  }

  switch (tensortype) {
  case TENSORTYPE_SCALAR:
    break;
  case TENSORTYPE_U:
    if (n_vars != 3)
    {
      groupname = CCTK_GroupName (gi);
      CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Group \"%s\" is declared with the tensor type U, but does not contain 3 variables -- cannot apply Cartoon boundary condition",
                  groupname);
      free (groupname);
      return -1;
    }
    break;
  case TENSORTYPE_DDSYM:
    if (n_vars != 6)
    {
      groupname = CCTK_GroupName (gi);
      CCTK_VWarn (1, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "Group \"%s\" is declared with the tensor type DDSYM, but does not contain 6 variables -- cannot apply Cartoon boundary condition",
                  groupname);
      free (groupname);
      return -1;
    }
    break;
  default:
    CCTK_WARN(0,"Tensor type not recognized by Cartoon2D.");
  }
    
  s = cctkGH->cctk_nghostzones[0];
  lnx = cctkGH->cctk_lsh[0];
  lnz = cctkGH->cctk_lsh[2];
  ny  = cctkGH->cctk_gsh[1];

  dx0 = CCTK_DELTA_SPACE(0);
  dy0 = CCTK_DELTA_SPACE(1);
  lx0 = CCTK_ORIGIN_SPACE(0) + dx0 * cctk_lbnd[0];

  timelevel = 0; 

  /* Cactus loop in C:  grid points with y = 0 */
  /* compare thorn_BAM_Elliptic */
  /* strides used in stencils, should be provided by cactus */
  di = 1;
  dj = lnx;

  /* y = 0 */
  j = ny/2;

  /* this union helps us to avoid compiler warning about discarding
     the const qualifier from a pointer target type */
  GH_fake_const.const_ptr = cctkGH;
  /* make sure that the input data is synced */
  CCTK_SyncGroupI(GH_fake_const.non_const_ptr, gi);

  /* z-direction: include lower and upper boundary */
  for (k = 0; k < lnz; k++)

  /* y-direction: as many zombies as the evolution stencil needs */
  for (jj = 1, dj = jj*lnx; jj <= ny/2; jj++, dj = jj*lnx) 

  /* x-direction: zombie for x < 0, including upper boundary for extrapol */
  for (i = -s; i < lnx; i++) {

    /* index into linear memory */
    ijk = CCTK_GFINDEX3D(cctkGH,i,j,k);
   
    /* what a neat way to hack in the zombie for x < 0, y = 0 */
    if (i < 0) {i += s; ijk += s; dj = 0;}

    /* compute coordinates (could also use Cactus grid function) */
    x = lx0 + dx0 * i;
    y = (dj) ? dy0 * jj : 0;
    rho = sqrt(x*x + y*y);

    /* compute rotation matrix
       note that this also works for x <= 0 (at lower boundary in x)
       note that rho is nonzero by definition if cactus checks dy ... 
    */
    rxx = x/rho;
    ryx = y/rho;
    rxy = -ryx;
    ryy = rxx;

    /* inverse rotation matrix, assuming detr = 1 */
    sxx = ryy;
    syx = -ryx;
    sxy = -rxy;
    syy = rxx;

    /* interpolate grid functions */
    switch (prolongtype)
    {
      case PROLONG_LAGRANGE:
        for (n = 0; n < n_vars; n++)
          f[n] = Cartoon2DInterp(cctkGH, cctkGH->data[var0+n][timelevel], 
                                 i, di, ijk, rho); 
        break;
      case PROLONG_ENO:
        for (n = 0; n < n_vars; n++)
          f[n] = Cartoon2DInterp_ENO(cctkGH, cctkGH->data[var0+n][timelevel], i, 
                                     di, ijk, rho); 
        break;
      default:
        CCTK_WARN(0, "Prolongation type not recognized by Cartoon2D.");
    }

    /* rotate grid tensor by matrix multiplication */
    if (tensortype == TENSORTYPE_SCALAR) {
      /* Scalar groups can have arbitrary many components; these
         "components" are then all scalars.  */
      for (n = 0; n < n_vars; n++)
      {
        t = cctkGH->data[var0 + n][timelevel];
        t[ijk+dj] = f[n];
        t[ijk-dj] = f[n];
      }
    }
    else if (tensortype == TENSORTYPE_U) {
      tx = cctkGH->data[vi][timelevel];
      ty = cctkGH->data[vi+1][timelevel];
      tz = cctkGH->data[vi+2][timelevel];
      fx = f[0];
      fy = f[1];
      fz = f[2];

      tx[ijk+dj] = rxx * fx + rxy * fy;
      ty[ijk+dj] = ryx * fx + ryy * fy;
      tz[ijk+dj] = fz;

      tx[ijk-dj] = sxx * fx + sxy * fy;
      ty[ijk-dj] = syx * fx + syy * fy;
      tz[ijk-dj] = fz;
    }
    else if (tensortype == TENSORTYPE_DDSYM) {
      txx = cctkGH->data[vi][timelevel];
      txy = cctkGH->data[vi+1][timelevel];
      txz = cctkGH->data[vi+2][timelevel];
      tyy = cctkGH->data[vi+3][timelevel];
      tyz = cctkGH->data[vi+4][timelevel];
      tzz = cctkGH->data[vi+5][timelevel];
      fxx = f[0];
      fxy = f[1];
      fxz = f[2];
      fyy = f[3];
      fyz = f[4];
      fzz = f[5];
      
      txx[ijk+dj] = fxx*sxx*sxx + 2*fxy*sxx*syx + fyy*syx*syx;
      tyy[ijk+dj] = fxx*sxy*sxy + 2*fxy*sxy*syy + fyy*syy*syy;
      txy[ijk+dj] = fxx*sxx*sxy + fxy*(sxy*syx+sxx*syy) + fyy*syx*syy;
      txz[ijk+dj] = fxz*sxx + fyz*syx;
      tyz[ijk+dj] = fxz*sxy + fyz*syy;
      tzz[ijk+dj] = fzz;

      txx[ijk-dj] = fxx*rxx*rxx + 2*fxy*rxx*ryx + fyy*ryx*ryx;
      tyy[ijk-dj] = fxx*rxy*rxy + 2*fxy*rxy*ryy + fyy*ryy*ryy;
      txy[ijk-dj] = fxx*rxx*rxy + fxy*(rxy*ryx+rxx*ryy) + fyy*ryx*ryy;
      txz[ijk-dj] = fxz*rxx + fyz*ryx;
      tyz[ijk-dj] = fxz*rxy + fyz*ryy;
      tzz[ijk-dj] = fzz;
    } 
    else {
      return(-1);
    }

    /* what a neat way to hack out the zombies for x < 0, y = 0 */
    if (dj == 0) {i -= s; ijk -= s; dj = jj*lnx;}
  }

  /* this union helps us to avoid compiler warning about discarding
     the const qualifier from a pointer target type */
  GH_fake_const.const_ptr = cctkGH;
  /* syncs needed after interpolation (actually only for x direction) */
  CCTK_SyncGroupI(GH_fake_const.non_const_ptr, gi);

  return(0);
}

void CCTK_FCALL CCTK_FNAME(BndCartoon2DVI)
                          (int *retval, const cGH **GH, int *tensortype, int *vi)
{
  *retval = BndCartoon2DVI(*GH, *tensortype, PROLONG_LAGRANGE, *vi);
}

int BndCartoon2DVN(const cGH *GH, int tensortype, const char *inpvarname)
{
  DECLARE_CCTK_PARAMETERS

  int vi;

  if (verbose) printf("Cartoon2D called for %s\n", inpvarname);
  vi = CCTK_VarIndex(inpvarname);

  return(BndCartoon2DVI(GH, tensortype, PROLONG_LAGRANGE, vi));
}

void CCTK_FCALL CCTK_FNAME(BndCartoon2DVN)
                          (int *retval, const cGH **GH, int *tensortype, ONE_FORTSTRING_ARG)
{
  ONE_FORTSTRING_CREATE(impvarname)
  *retval = BndCartoon2DVN(*GH, *tensortype, impvarname);
  free(impvarname);
}

int BndCartoon2DGN(const cGH *GH, int tensortype, const char *group)
{
  DECLARE_CCTK_PARAMETERS
  int n_group;

  if (verbose && GH->cctk_iteration==1) CCTK_VInfo(CCTK_THORNSTRING,"Cartoon2D called for %s (message appears only once)", group);
  
  return(BndCartoon2DVI(GH, tensortype, PROLONG_LAGRANGE, 
                        CCTK_FirstVarIndex(group)));
}

void CCTK_FCALL CCTK_FNAME(BndCartoon2DGN)
                          (int *retval, const cGH **GH, int *tensortype, ONE_FORTSTRING_ARG)
{
  ONE_FORTSTRING_CREATE(group)
  *retval = BndCartoon2DGN(*GH, *tensortype, group);
  free(group);
}

/* interpolation on x-axis */
static CCTK_REAL Cartoon2DInterp(const cGH *cctkGH, CCTK_REAL *f, 
                                 int i, int di, int ijk, CCTK_REAL x)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;

  CCTK_REAL x0;
  CCTK_REAL lx0, dx0;
  CCTK_REAL y[6], r;
  int lnx;
  int n, offset;

  lnx = cctkGH->cctk_lsh[0];
    
  dx0 = CCTK_DELTA_SPACE(0);
  lx0 = CCTK_ORIGIN_SPACE(0) + dx0 * cctk_lbnd[0];

  /* find i such that x(i) < x <= x(i+1)
     for rotation on entry always x > x(i), but sometimes also x > x(i+1) */
  while (x > lx0 + dx0 * (i+1)) {i++; ijk++;}

  /* first attempt to interface to JT's interpolator */

  /* offset of stencil, note that rotation leads to x close to x0 
       for large x */
  offset = order/2;
  
  /* shift stencil at boundaries */
  /* note that for simplicity we don't distinguish between true boundaries
     and decomposition boundaries: the sync fixes that! */
  if (i-offset < 0) offset = i;
  if (i-offset+order >= lnx) offset = i+order-lnx+1;
  
  /* fill in info */
  /* fills in old data near axis, but as long as stencil at axis is 
     centered, no interpolation happens anyway */
  x0 = lx0 + dx0 * (i-offset);
  for (n = 0; n <= order; n++) {
    y[n] = f[ijk-offset+n];
  }
  
  /* call interpolator */
  r = interpolate_local(order, x0, dx0, y, x);
  
  return r;
}

static CCTK_REAL Cartoon2DInterp_ENO(const cGH *cctkGH, 
                                    CCTK_REAL *f, int i, int di, 
                                    int ijk, CCTK_REAL x)
{
  
  DECLARE_CCTK_PARAMETERS;
  DECLARE_CCTK_ARGUMENTS;
  
  CCTK_REAL x0;
  CCTK_REAL lx0, dx0;
  CCTK_REAL y[5], r;
  int lnx;
  int n, offset;
  
  lnx = cctkGH->cctk_lsh[0];
  
  dx0 = CCTK_DELTA_SPACE(0);
  lx0 = CCTK_ORIGIN_SPACE(0) + dx0 * cctk_lbnd[0];
  
  /* find i such that x(i) < x <= x(i+1)
     for rotation on entry always x > x(i), but sometimes also x > x(i+1) */
  while (x > lx0 + dx0 * (i+1)) {i++; ijk++;}
  
  /* first attempt to interface to JT's interpolator */
  
  /* offset of stencil, note that rotation leads to x close to x0 
     for large x */
  offset = 2;
  
  /* shift stencil at boundaries */
  /* note that for simplicity we don't distinguish between true boundaries
     and decomposition boundaries: the sync fixes that! */
  if (i-offset < 0) offset = i;
  if (i-offset+4 >= lnx) offset = i+5-lnx;
  
  /* fill in info */
  /* fills in old data near axis, but as long as stencil at axis is 
     centered, no interpolation happens anyway */  
  x0 = lx0 + dx0 * (i-offset);
  for (n = 0; n <= 4; n++) 
  {
    y[n] = f[ijk-offset+n];
  }
  
  /* call interpolator */
  r = interpolate_eno(x0, dx0, y, x);
  
  return r;
}