aboutsummaryrefslogtreecommitdiff
path: root/src/Symmetry.c
blob: df132ee2096a717b1599ac4ef2eecfe08dd6bccb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*@@
   @file      Symmetry.c
   @date      Mon Mar 15 15:09:00 1999
   @author    Gerd Lanfermann
   @desc 
     This file contains the routines for registering and applying symmetry 
     boundary conditions
   @enddesc 
 @@*/

#include <stdlib.h>
#include <stdio.h>

#include "cctk.h"
#include "cctk_parameters.h"
#include "flesh.h"
#include "Symmetry.h" 
#include "GHExtensions.h"
#include "Groups.h"
#include "WarnLevel.h"
#include "Misc.h"
#include "FortranString.h"

/*#define DEBUG_BOUND*/

 /*@@
   @routine    SetSymmetry
   @date       Mon Mar 15 15:10:58 1999
   @author     Gerd Lanfermann
   @desc 
   This routine sets the GH extension (EinsteinBoundGHex *bGHex), 
   which describes the symmetry  boundary type of each GF. Takes 
   the name of the GF ("implementation::gfname") and the symmetry operators 
   sx,sy,sz and inserts them in the array bGHex. 
   These values will looked up by ApplySym
   @enddesc 
   @calls     
   @calledby   
   @history 
 
   @endhistory 

@@*/

void SetSymmetry(cGH *GH, int sx, int sy, int sz, const char *imp_gf) {
  
  DECLARE_CCTK_PARAMETERS

  SymmetryGHex *sGHex; 
  int index;

  /* Pointer to the SymmetryGHextension */
  sGHex  = (SymmetryGHex *)GH->extensions[CCTK_GHExtensionHandle("Symmetry")];

  /* now that we have the same, get the index to the GFs */
  index = CCTK_VarIndex(imp_gf);
  if (index<0) {
    char *message;
    message = (char *)malloc((100*strlen(imp_gf))*sizeof(char));
    sprintf(message,"Grid function %s has no index",imp_gf);
    CCTK_WARN(0,message);
    free(message);
  };
  
  /* Reference the hash table in the GHex and tell it what kind of
     symmetry is being applied 
     (depending on sym and the grid layout) 
     If there is no symmetry necessary,set ESYM_NOSYM
     When we apply a symmetry and find ESYM_UNSET, something went wrong! 
   */

  if (CCTK_Equals(symmetry,"full")) {

#ifdef DEBUG_BOUND
    printf(" Registered full grid symmetries for -%s- in SetSymmetry\n",imp_gf);
#endif

    sGHex->GFSym[index][0] = GFSYM_NOSYM;
    sGHex->GFSym[index][1] = GFSYM_NOSYM;
    sGHex->GFSym[index][2] = GFSYM_NOSYM;

  } else if (CCTK_Equals(symmetry,"octant")) {

#ifdef DEBUG_BOUND
    printf(" Registered octant symmetries for -%s- in SetSymmetry\n",imp_gf);
#endif

    sGHex->GFSym[index][0] = sx;
    sGHex->GFSym[index][1] = sy;
    sGHex->GFSym[index][2] = sz;

  } else if (CCTK_Equals(symmetry,"quadrant")) {

#ifdef DEBUG_BOUND
    printf("Registered quadrant symmetries for -%s- in SetSymmetry\n",imp_gf);
#endif    

    sGHex->GFSym[index][0] = sx;
    sGHex->GFSym[index][1] = sy;
    sGHex->GFSym[index][2] = GFSYM_NOSYM;

  } else if (CCTK_Equals(symmetry,"bitant")) {

#ifdef DEBUG_BOUND
    printf("Registered bitant symmetries for -%s- in SetSymmetry\n",imp_gf);
#endif    

    sGHex->GFSym[index][2] = sz;
    sGHex->GFSym[index][0] = GFSYM_NOSYM;
    sGHex->GFSym[index][1] = GFSYM_NOSYM;
  }

  /* All untouched GFSym[][] will hold GFSYM_UNSET */

}

void FMODIFIER FORTRAN_NAME(SetSymmetry)(cGH *GH,  int *sx, int *sy, int *sz, ONE_FORTSTRING_ARG) {

  ONE_FORTSTRING_CREATE(imp_gf) 

  SetSymmetry(GH, *sx, *sy, *sz, imp_gf);

  free(imp_gf);
} 




 /*@@
   @routine    ApplySymmetry
   @date       Mon Mar 15 15:16:28 1999
   @author     Gerd Lanfermann
   @desc 
      Routine applies the symmetry BC to the GF is a  group as set by SetSym 
      in GHExtension.  It is called by C or Fortran (via a wrapper) by 
      passing the group name. The assignment of the symmetries is carried out
      by the F routine FortranSym
   @enddesc 
   @calls   FortranSym  
   @calledby   
   @history 
 
   @endhistory 

@@*/

void ApplySymmetry(cGH *GH, char *imp_group) {

  void FORTRAN_NAME(SymmetryCondition)(int *, CCTK_REAL *, int *, int *, int *);
  
  DECLARE_CCTK_PARAMETERS

  SymmetryGHex *sGHex; 
  int groupnum;        
  int first,last,index,j;
  int doSym[3];

  /* Get out if we are sure no symmetries should be applied */
  if (CCTK_Equals(symmetry,"full")) return;

  /* Get the pointer to the Symmetry GH extension */
  sGHex  = (SymmetryGHex*)GH->extensions[CCTK_GHExtensionHandle("Symmetry")];

#ifdef DEBUG_BOUND
  printf("\n In ApplySymmetry\n -----------\n");
  printf(" Applying boundary conditions to -%s-\n",imp_group);
#endif

  /* Get the group number */
  groupnum = CCTK_GroupIndex(imp_group);
  if (groupnum < 0) 
  {
    char *message=NULL;
    message = (char *)malloc(300*sizeof(char)+sizeof(imp_group));
    sprintf(message,"Invalid group number decomposing %s",imp_group);
    CCTK_WARN(0,message);
    free(message);
  }

  /*get the index of the first GF in the group and how many Vars there are*/
  first = CCTK_FirstVarIndexI(groupnum);
  last  = first+CCTK_NumVarsInGroupI(groupnum)-1;

  /* loop over the variables in the group */
  for (index=first; index<=last; index++) {

    /* and check that we actually have a grid function (and not a scalar)*/
    if (CCTK_GroupTypeFromVarI(index) == GROUP_GF) {

      /*at this point, there should be NO ESYM_UNSET anymore 
        if there is, we forgot to register the symmetries for a GF */
      if ((sGHex->GFSym[index][0]==GFSYM_UNSET)||
	  (sGHex->GFSym[index][1]==GFSYM_UNSET)||
	  (sGHex->GFSym[index][2]==GFSYM_UNSET)) {
	char *message=NULL;
	message = (char *)malloc(300*sizeof(char)+sizeof(imp_group));
	sprintf(message,"Cannot apply symmetry to -%s- without registered symmetries",imp_group);
	CCTK_WARN(1,message);
	free(message);
      }
      
      /* whether we want to apply sym depends on several things: */
      for (j=0;j<3;j++) 
	if ((GH->cctk_lsh[j]>1) && 
	    (sGHex->GFSym[index][j] != GFSYM_UNSET) &&
	    (sGHex->GFSym[index][j] != GFSYM_NOSYM))
	  doSym[j] = 1;
	else 
	  doSym[j] = 0;
	

      /* Call the Fortran Symmetry Routine */
      FORTRAN_NAME(SymmetryCondition)(
	     GH->cctk_lsh,            
	     /* xyz-size of PE local grid */
	     GH->data[index][0],         
	     /* pointer to start of data array for GF[index]*/
	     GH->cctk_nghostzones,            
	     /* number of ghost zones */
	     sGHex->GFSym[index],  
	     /* the symmetries for this GF */
	     doSym
	     /* flags whether to apply syms */
	     );                       
    }
  }
}


void FMODIFIER FORTRAN_NAME(ApplySymmetry)(cGH *GH, ONE_FORTSTRING_ARG) { 

  ONE_FORTSTRING_CREATE(imp_group)
  
  ApplySymmetry(GH,imp_group);

  free(imp_group);
}