summaryrefslogtreecommitdiff
path: root/src/brill.c
blob: cc455872e618b55e508645c0af55812a4aaab45c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>

#include <lapacke.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#define ACC_TEST 1

#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define MIN(x, y) ((x) > (y) ? (y) : (x))
#define SQR(x) ((x) * (x))
#define SGN(x) ((x) >= 0.0 ? 1.0 : -1.0)

/*
 * small number to avoid r=0 singularities
 */
#define EPS 1E-08

/* a set of basis functions */
typedef struct BasisSet {
    /* evaluate the idx-th basis function at the specified point*/
    long double (*eval)      (long double coord, int idx);
    /* evaluate the first derivative of the idx-th basis function at the specified point*/
    long double (*eval_diff1)(long double coord, int idx);
    /* evaluate the second derivative of the idx-th basis function at the specified point*/
    long double (*eval_diff2)(long double coord, int idx);
    /**
     * Get the idx-th collocation point for the specified order.
     * idx runs from 0 to order - 1 (inclusive)
     */
    long double (*colloc_point)(int order, int idx);
} BasisSet;

/*
 * The basis of even (n = 2 * idx) SB functions (Boyd 2000, Ch 17.9)
 * SB(x, n) = sin((n + 1) arccot(|x| / L))
 * They are symmetric wrt origin and decay as 1/x in infinity.
 */

static CCTK_REAL scale_factor;

#define SCALE_FACTOR scale_factor

static long double sb_even_eval(long double coord, int idx)
{
    long double val = (coord == 0.0) ? M_PI_2 : atanl(SCALE_FACTOR / fabsl(coord));

    idx *= 2;   // even only

    return sinl((idx + 1) * val);
}

static long double sb_even_eval_diff1(long double coord, int idx)
{
    long double val = (coord == 0.0) ? M_PI_2 : atanl(SCALE_FACTOR / fabsl(coord));

    idx *= 2;   // even only

    return - SCALE_FACTOR * (idx + 1) * SGN(coord) * cosl((idx + 1) * val) / (SQR(SCALE_FACTOR) + SQR(coord));
}

static long double sb_even_eval_diff2(long double coord, int idx)
{
    long double val = (coord == 0.0) ? M_PI_2 : atanl(SCALE_FACTOR / fabsl(coord));

    idx *= 2;   // even only

    return SCALE_FACTOR * (idx + 1) * SGN(coord) * (2 * fabsl(coord) * cosl((idx + 1) * val) - SCALE_FACTOR * (idx + 1) * sinl((idx + 1) * val)) / SQR(SQR(SCALE_FACTOR) + SQR(coord));
}

static long double sb_even_colloc_point(int order, int idx)
{
    long double t;

    idx = order - idx - 1;
    order *= 2;

    t = (idx + 2) * M_PI / (order + 4);
    return SCALE_FACTOR / tanl(t);
}

static const BasisSet sb_even_basis = {
    .eval         = sb_even_eval,
    .eval_diff1   = sb_even_eval_diff1,
    .eval_diff2   = sb_even_eval_diff2,
    .colloc_point = sb_even_colloc_point,
};

typedef struct BrillDataContext {
    /* options */
    CCTK_REAL amplitude;

    double (*q_func)(struct BrillDataContext *bd, double rho, double z);
    double (*laplace_q_func)(struct BrillDataContext *bd, double rho, double z);

    /* state */
    const BasisSet *basis;

    int nb_coeffs_x;
    int nb_coeffs_z;
    int nb_coeffs;

    int nb_colloc_points_x;
    int nb_colloc_points_z;
    int nb_colloc_points;

    int colloc_grid_order_x;
    int colloc_grid_order_z;

    gsl_vector *psi_coeffs;
} BrillDataContext;

static int brill_construct_matrix(BrillDataContext *bd, gsl_matrix *mat,
                                  gsl_vector *rhs)
{
    CCTK_REAL *basis_val, *basis_dval, *basis_d2val;
    int idx_coeff_x, idx_coeff_z, idx_grid_x, idx_grid_z;

    /* precompute the basis values we will need */
    // FIXME: assumes same number of points in x and z directions
    basis_val   = malloc(sizeof(*basis_val)   * bd->nb_colloc_points_x * bd->nb_coeffs_x);
    basis_dval  = malloc(sizeof(*basis_dval)  * bd->nb_colloc_points_x * bd->nb_coeffs_x);
    basis_d2val = malloc(sizeof(*basis_d2val) * bd->nb_colloc_points_x * bd->nb_coeffs_x);
    for (int i = 0; i < bd->nb_colloc_points_x; i++) {
        CCTK_REAL coord = bd->basis->colloc_point(bd->colloc_grid_order_x, i);
        for (int j = 0; j < bd->nb_coeffs_x; j++) {
            basis_val  [i * bd->nb_coeffs_x + j] = bd->basis->eval(coord, j);
            basis_dval [i * bd->nb_coeffs_x + j] = bd->basis->eval_diff1(coord, j);
            basis_d2val[i * bd->nb_coeffs_x + j] = bd->basis->eval_diff2(coord, j);
        }
    }

    for (idx_grid_z = 0; idx_grid_z < bd->nb_colloc_points_z; idx_grid_z++) {
        CCTK_REAL z_physical = bd->basis->colloc_point(bd->colloc_grid_order_z, idx_grid_z);

        for (idx_grid_x = 0; idx_grid_x < bd->nb_colloc_points_x; idx_grid_x++) {
            CCTK_REAL x_physical = bd->basis->colloc_point(bd->colloc_grid_order_x, idx_grid_x);
            CCTK_REAL d2q        = bd->laplace_q_func(bd, x_physical, z_physical);
            int idx_grid         = idx_grid_z * bd->nb_colloc_points_z + idx_grid_x;

            for (idx_coeff_z = 0; idx_coeff_z < bd->nb_coeffs_z; idx_coeff_z++)
                for (idx_coeff_x = 0; idx_coeff_x < bd->nb_coeffs_x; idx_coeff_x++) {
                    int idx_coeff = idx_coeff_z * bd->nb_coeffs_z + idx_coeff_x;

                    mat->data[idx_grid + mat->tda * idx_coeff] = basis_d2val[idx_grid_x * bd->nb_coeffs_x + idx_coeff_x] * basis_val[idx_grid_z * bd->nb_coeffs_z + idx_coeff_z] * x_physical +
                                                                 basis_dval [idx_grid_x * bd->nb_coeffs_x + idx_coeff_x] * basis_val[idx_grid_z * bd->nb_coeffs_z + idx_coeff_z] +
                                                                 basis_d2val[idx_grid_z * bd->nb_coeffs_z + idx_coeff_z] * basis_val[idx_grid_x * bd->nb_coeffs_x + idx_coeff_x] * x_physical +
                                                                 basis_val  [idx_grid_x * bd->nb_coeffs_x + idx_coeff_x] * basis_val[idx_grid_z * bd->nb_coeffs_z + idx_coeff_z] * 0.25 * d2q * x_physical;
                }
            rhs->data[idx_grid] = -0.25 * d2q * x_physical;
        }
    }

    free(basis_val);
    free(basis_dval);
    free(basis_d2val);

    return 0;
}

static int solve_linear(gsl_matrix *mat, gsl_vector **px, gsl_vector **prhs)
{
    int *ipiv;
    gsl_matrix *mat_f;
    double cond, ferr, berr, rpivot;

    gsl_vector   *x = *px;
    gsl_vector *rhs = *prhs;
    char      equed = 'N';
    int         ret = 0;

    ipiv  = malloc(mat->size1 * sizeof(*ipiv));
    mat_f = gsl_matrix_alloc(mat->size1, mat->size2);
    if (!ipiv || !mat_f) {
        ret = -ENOMEM;
        goto fail;
    }

    LAPACKE_dgesvx(LAPACK_COL_MAJOR, 'N', 'N', mat->size1, 1,
                   mat->data, mat->tda, mat_f->data, mat_f->tda, ipiv, &equed,
                   NULL, NULL, rhs->data, rhs->size, x->data, x->size,
                   &cond, &ferr, &berr, &rpivot);

    CCTK_VInfo(CCTK_THORNSTRING, "LU factorization solution to a %zdx%zd matrix: "
               "condition number %16.16g; forward error %16.16g backward error %16.16g",
               mat->size1, mat->size2, cond, ferr, berr);
fail:
    gsl_matrix_free(mat_f);
    free(ipiv);

    return ret;
}

static int solve_svd(gsl_matrix *mat, gsl_vector **px, gsl_vector **prhs)
{
    double *sv;
    int rank;

    gsl_vector   *x = *px;
    gsl_vector *rhs = *prhs;

    sv = malloc(sizeof(*sv) * x->size);
    if (!sv)
        return -ENOMEM;

    LAPACKE_dgelsd(LAPACK_COL_MAJOR, rhs->size, x->size, 1, mat->data, mat->tda,
                   rhs->data, rhs->size, sv, -1, &rank);

    CCTK_VInfo(CCTK_THORNSTRING, "Least squares SVD solution to a %zdx%zd matrix: "
               "rank %d, condition number %16.16g", mat->size1, mat->size2,
               rank, sv[x->size - 1] / sv[0]);

    gsl_vector_free(x);

    *px         = rhs;
    (*px)->size = mat->size1;
    *prhs       = NULL;

    free(sv);

    return 0;
}

/*
 * Solve the equation
 * Δψ + ¼ ψ (∂²q/∂r² + ∂²q/∂z²) = 0
 * for the coefficients of spectral approximation of ψ:
 * ψ(r, z) = 1 + ΣaᵢⱼTᵢ(r)Tⱼ(z)
 * where i =  { 0, ... , bd->nb_coeffs_x };
 *       j =  { 0, ... , bd->nb_coeffs_z };
 * q(r, z) and Tᵢ(x) are defined by bd->q_func, bd->laplace_q_func and
 * bd->basis.
 *
 * The cofficients are exported in bd->psi_coeffs
 */
static int brill_solve(BrillDataContext *bd)
{
    gsl_matrix *mat = NULL;
    gsl_vector *coeffs = NULL, *rhs = NULL;

#if ACC_TEST
    gsl_vector *rhs_bkp = NULL;
    gsl_matrix *mat_bkp = NULL;
#endif

    int ret = 0;

    /* allocate and fill the pseudospectral matrix */
    mat    = gsl_matrix_alloc (bd->nb_coeffs, bd->nb_colloc_points); // inverted order for lapack
    coeffs = gsl_vector_alloc (bd->nb_coeffs);
    rhs    = gsl_vector_calloc(bd->nb_colloc_points);
    if (!mat || !coeffs || !rhs) {
        ret = -ENOMEM;
        goto fail;
    }

    /* fill the matrix */
    ret = brill_construct_matrix(bd, mat, rhs);
    if (ret < 0)
        goto fail;

#if ACC_TEST
    /* make backups of the matrix and RHS, since they might be destroyed later */
    mat_bkp = gsl_matrix_alloc(mat->size2, mat->size1);
    rhs_bkp = gsl_vector_alloc(rhs->size);
    if (!mat_bkp || !rhs_bkp) {
        ret = -ENOMEM;
        goto fail;
    }

    gsl_vector_memcpy(rhs_bkp, rhs);
    gsl_matrix_transpose_memcpy(mat_bkp, mat);
#endif

    /* solve for the coeffs */
    if (bd->nb_colloc_points > bd->nb_coeffs)
        ret = solve_svd(mat, &coeffs, &rhs);
    else
        ret = solve_linear(mat, &coeffs, &rhs);

    /* export the result to the caller */
    bd->psi_coeffs = coeffs;

#if ACC_TEST
    {
        double min, max, rmin, rmax;

        gsl_vector_minmax(rhs_bkp, &rmin, &rmax);
        gsl_blas_dgemv(CblasNoTrans, 1.0, mat_bkp, coeffs, -1.0, rhs_bkp);
        gsl_vector_minmax(rhs_bkp, &min, &max);

        CCTK_VInfo(CCTK_THORNSTRING, "max(|A·x - rhs|) / max(|rhs|): %16.16g",
                   MAX(fabs(min), fabs(max)) / MAX(fabs(rmin), fabs(rmax)));
    }
#endif

fail:

#if ACC_TEST
    gsl_matrix_free(mat_bkp);
    gsl_vector_free(rhs_bkp);
#endif

    if (ret < 0)
        gsl_vector_free(coeffs);

    gsl_vector_free(rhs);
    gsl_matrix_free(mat);

    return ret;
}

// q function form from PHYSICAL REVIEW D 88, 103009 (2013)
// with σ and ρ_0 hardcoded to 1 for now
static double q_gundlach(BrillDataContext *bd, double rho, double z)
{
    return bd->amplitude * SQR(rho) * exp(- (SQR(rho) + SQR(z)));
}

static double laplace_q_gundlach(BrillDataContext *bd, double rho, double z)
{
    double r2 = SQR(rho);
    double z2 = SQR(z);
    double e  = exp(-r2 - z2);

    return 2 * bd->amplitude * e * (1.0 + 2 * r2 * (r2 + z2 - 3));
}

static BrillDataContext *init_bd(cGH *cctkGH, CCTK_REAL amplitude,
                                 int basis_order_r, int basis_order_z,
                                 int colloc_offset_r, int colloc_offset_z,
                                 double sf, int overdet)
{
    BrillDataContext *bd;

    if (basis_order_r != basis_order_z)
        CCTK_WARN(0, "Different r and z basis orders are not supported.");

    bd = malloc(sizeof(*bd));

    bd->q_func         = q_gundlach;
    bd->laplace_q_func = laplace_q_gundlach;
    bd->amplitude      = amplitude;

    bd->basis      = &sb_even_basis;

    bd->nb_coeffs_x = basis_order_r;
    bd->nb_coeffs_z = basis_order_z;

    bd->nb_coeffs = bd->nb_coeffs_x * bd->nb_coeffs_z;

    bd->nb_colloc_points_x = basis_order_r + overdet;
    bd->nb_colloc_points_z = basis_order_z + overdet;

    bd->nb_colloc_points = bd->nb_colloc_points_x * bd->nb_colloc_points_z;

    bd->colloc_grid_order_x = basis_order_r + colloc_offset_r;
    bd->colloc_grid_order_z = basis_order_z + colloc_offset_z;

    scale_factor = sf;

    return bd;
}

void brill_data(CCTK_ARGUMENTS)
{
    static BrillDataContext *prev_bd;

    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    BrillDataContext *bd;

    long double *basis_val_r, *basis_val_z;

    int64_t grid_size = CCTK_GFINDEX3D(cctkGH,
                                       cctk_lsh[0] - 1,
                                       cctk_lsh[1] - 1,
                                       cctk_lsh[2] - 1) + 1;

    /* on the first run, solve the equation for ψ */
    if (!prev_bd) {
        bd = init_bd(cctkGH, amplitude, basis_order_r, basis_order_z,
                     colloc_grid_offset_r, colloc_grid_offset_z,
                     scale_factor, overdet);

        brill_solve(bd);

        if (export_coeffs)
            memcpy(brill_coeffs, bd->psi_coeffs->data, sizeof(*brill_coeffs) * bd->nb_coeffs);

        prev_bd = bd;
    } else
        bd = prev_bd;

    memset(kxx, 0, sizeof(*kxx) * grid_size);
    memset(kyy, 0, sizeof(*kyy) * grid_size);
    memset(kzz, 0, sizeof(*kzz) * grid_size);
    memset(kxy, 0, sizeof(*kxy) * grid_size);
    memset(kxz, 0, sizeof(*kxz) * grid_size);
    memset(kyz, 0, sizeof(*kyz) * grid_size);
    memset(gxz, 0, sizeof(*kxz) * grid_size);
    memset(gyz, 0, sizeof(*kyz) * grid_size);

    /* precompute the basis values on the grid points */
    basis_val_r = malloc(sizeof(*basis_val_r) * bd->nb_coeffs_x * cctk_lsh[1] * cctk_lsh[0]);
    basis_val_z = malloc(sizeof(*basis_val_z) * bd->nb_coeffs_z * cctk_lsh[2]);

    for (int i = 0; i < cctk_lsh[2]; i++) {
        CCTK_REAL zz = z[CCTK_GFINDEX3D(cctkGH, 0, 0, i)];
        for (int j = 0; j < bd->nb_coeffs_z; j++)
            basis_val_z[i * bd->nb_coeffs_z + j] = bd->basis->eval(zz, j);
    }

    for (int j = 0; j < cctk_lsh[1]; j++)
        for (int i = 0; i < cctk_lsh[0]; i++) {
            CCTK_REAL xx = x[CCTK_GFINDEX3D(cctkGH, i, j, 0)];
            CCTK_REAL yy = y[CCTK_GFINDEX3D(cctkGH, i, j, 0)];
            CCTK_REAL r = sqrt(SQR(xx) + SQR(yy));

            for (int k = 0; k < bd->nb_coeffs_x; k++)
                basis_val_r[(j * cctk_lsh[0] + i) * bd->nb_coeffs_x + k] = bd->basis->eval(r, k);
        }

#pragma omp parallel for
    for (int k = 0; k < cctk_lsh[2]; k++)
        for (int j = 0; j < cctk_lsh[1]; j++)
            for (int i = 0; i < cctk_lsh[0]; i++) {
                int    index = CCTK_GFINDEX3D(cctkGH, i, j, k);
                long double xx = x[index], yy = y[index], zz = z[index];

                long double r2 = SQR(xx) + SQR(yy);
                long double r  = sqrtl(r2);

                long double q   = bd->q_func(bd, r, zz);
                long double e2q = expl(2 * q);

                long double psi = 1.0, psi4;

                for (int n = 0; n < bd->nb_coeffs_z; n++)
                    for (int m = 0; m < bd->nb_coeffs_x; m++)
                        psi += bd->psi_coeffs->data[n * bd->nb_coeffs_z + m] * basis_val_r[(j * cctk_lsh[0] + i) * bd->nb_coeffs_x + m] * basis_val_z[k * bd->nb_coeffs_z + n];

                psi4 = SQR(SQR(psi));

                if (r2 < EPS)
                    r2 = EPS;

                gxx[index] = psi4 * (e2q + (1 - e2q) * SQR(yy) / r2);
                gyy[index] = psi4 * (e2q + (1 - e2q) * SQR(xx) / r2);
                gzz[index] = psi4 * e2q;
                gxy[index] = psi4 * (-(1.0 - e2q) * xx * yy / r2);
            }
}