aboutsummaryrefslogtreecommitdiff
path: root/src/jtutil/test_linear_map.cc
blob: 29b89741e5887e24fedff5363033abc3c996afb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// test_linear_map.cc -- test driver for linear_map class
// $Header$

#include <assert.h>
#include <stdio.h>

#include "stdc.h"
#include "util.hh"
#include "linear_map.hh"

using namespace AHFinderDirect;

using jtutil::fuzzy;
using jtutil::linear_map;

//******************************************************************************

//
// Usage:
//	test_linear_map
// If an argument is supplied (it doesn't matter what it is), then
// the array indices will be printed as they're tested.
//
int main(int argc, const char *const argv[])
{
const int min_int = 4;		const int max_int = 14;
const int middle_int = (min_int + max_int) / 2;
const int min_widen = 13;	const int max_widen = 9;
const double min_fp = 9.0;
const double delta_fp = 0.1;
const double max_fp = 10.0;
const double middle_fp = (min_fp + max_fp) / 2.0;

printf("constructing linear_map<double>...\n");
linear_map<double> lm_wide(min_int-min_widen, max_int+max_widen,
			   min_fp-min_widen*delta_fp,
			   delta_fp,
			   max_fp+max_widen*delta_fp);
linear_map<double> lm = *new linear_map<double>(lm_wide, min_int, max_int);

printf("checking bounds and range info...\n");
assert(lm.min_int() == min_int);
assert(lm.max_int() == max_int);
assert(lm.N_points() == jtutil::how_many_in_range(min_int,max_int));

assert(   lm.is_in_range(min_int)   );
assert(   lm.is_in_range(max_int)   );
assert( ! lm.is_in_range(min_int-1) );
assert( ! lm.is_in_range(max_int+1) );

assert( lm.clamp(min_int-100) == min_int    );
assert( lm.clamp(min_int-1  ) == min_int    );
assert( lm.clamp(min_int    ) == min_int    );
assert( lm.clamp(min_int+1  ) == min_int+1  );
assert( lm.clamp(middle_int ) == middle_int );
assert( lm.clamp(max_int-1  ) == max_int-1  );
assert( lm.clamp(max_int    ) == max_int    );
assert( lm.clamp(max_int+1  ) == max_int    );
assert( lm.clamp(max_int+100) == max_int    );

assert( fuzzy<double>::EQ(lm.origin(), lm.fp_of_int_unchecked(0)) );
assert( fuzzy<double>::EQ(lm.delta_fp(), delta_fp) );
assert( fuzzy<double>::EQ(lm.inverse_delta_fp(), 1.0/delta_fp) );
assert( fuzzy<double>::EQ(lm.min_fp(), min_fp) );
assert( fuzzy<double>::EQ(lm.max_fp(), max_fp) );

assert(   lm.is_in_range(min_fp)         );
assert(   lm.is_in_range(max_fp)         );
assert( ! lm.is_in_range(min_fp-1.0e-10) );
assert( ! lm.is_in_range(max_fp+1.0e-10) );

assert( fuzzy<double>::EQ(lm.clamp(min_fp - 100.0*delta_fp), min_fp) );
assert( fuzzy<double>::EQ(lm.clamp(min_fp -   0.4*delta_fp), min_fp) );
assert( fuzzy<double>::EQ(lm.clamp(min_fp), min_fp) );
assert( fuzzy<double>::EQ(lm.clamp(min_fp + 0.4*delta_fp),
				   min_fp + 0.4*delta_fp) );
assert( fuzzy<double>::EQ(lm.clamp(middle_fp), middle_fp) );
assert( fuzzy<double>::EQ(lm.clamp(max_fp - 0.4*delta_fp),
				   max_fp - 0.4*delta_fp) );
assert( fuzzy<double>::EQ(lm.clamp(max_fp), max_fp) );
assert( fuzzy<double>::EQ(lm.clamp(max_fp +   0.4*delta_fp), max_fp) );
assert( fuzzy<double>::EQ(lm.clamp(max_fp + 100.0*delta_fp), max_fp) );

printf("checking delta roundings...\n");
      {
    for (int i = 1 ; i <= 3 ; ++i)
    {
    printf("   testing i = %d...\n", i);
    assert( fuzzy<double>::EQ( lm.delta_fp_of_delta_int(i), i*delta_fp ) );
    assert( lm.delta_int_of_delta_fp(i*delta_fp) == i );
    double di = double(i);

    // test silent roundings
    assert( lm.delta_int_of_delta_fp((di-0.49)*delta_fp, lm.nia_round) == i );
    assert( lm.delta_int_of_delta_fp((di+0.49)*delta_fp, lm.nia_round) == i );

    // test floor/ceiling
    assert( lm.delta_int_of_delta_fp((di-0.01)*delta_fp, lm.nia_floor  ) == i-1 );
    assert( lm.delta_int_of_delta_fp((di-0.01)*delta_fp, lm.nia_ceiling) == i   );
    assert( lm.delta_int_of_delta_fp((di+0.01)*delta_fp, lm.nia_round  ) == i   );
    assert( lm.delta_int_of_delta_fp((di+0.01)*delta_fp, lm.nia_ceiling) == i+1 );
    }
      }

printf("this should produce a pair of warning messages...\n");
assert( lm.delta_int_of_delta_fp(2.99*delta_fp, lm.nia_warning) == 3 );
assert( lm.delta_int_of_delta_fp(3.01*delta_fp, lm.nia_warning) == 3 );

printf("checking mappings...\n");
  {
int i;		// must declare these outside loop
double x;	// because we have *two* loop variables!
	for (i = min_int, x = min_fp ;
	     i <= max_int ;
	     ++i, x += delta_fp)
	{
	printf("   testing i = %d of [%d,%d]...\n", i, min_int, max_int);
	// test normal int <--> fp conversions
	assert( fuzzy<double>::EQ( lm.fp_of_int(i), x) );
	assert( lm.int_of_fp(x) == i );

	// test fp --> int returning result as fp
	if (i > min_int)
		assert(
		   fuzzy<double>::EQ(
		      lm.fp_int_of_fp(x - 0.5*delta_fp), double(i) - 0.5
				    )
		      );
	if (i < max_int)
		assert(
		   fuzzy<double>::EQ(
		      lm.fp_int_of_fp(x + 0.5*delta_fp), double(i) + 0.5
				    )
		      );

	// test silent rounding
	if (i > min_int)
		assert( lm.int_of_fp(x - 0.49*delta_fp, lm.nia_round) == i );
	if (i < max_int)
		assert( lm.int_of_fp(x + 0.49*delta_fp, lm.nia_round) == i );

	// test floor/ceiling
	if (i > min_int)
		assert( lm.int_of_fp(x - 0.01*delta_fp, lm.nia_floor) == i-1 );
	if (i < max_int)
		assert( lm.int_of_fp(x + 0.01*delta_fp, lm.nia_ceiling) == i+1 );

	// test zero-origin conversions
	assert( lm.zero_origin_int(i) == i - min_int );
	assert( lm.map_int(lm.zero_origin_int(i)) == i );
	}
  }

printf("this should produce a pair of warning messages...\n");
assert( lm.int_of_fp(min_fp + 0.01*delta_fp,
		     linear_map<double>::nia_warning) == min_int );
assert( lm.int_of_fp(max_fp - 0.01*delta_fp,
		     linear_map<double>::nia_warning) == max_int );

printf("this should produce an error message...\n");
#ifdef TEST_RANGE
assert( lm.int_of_fp(min_fp - 0.01*delta_fp) == min_int );
#else
assert( lm.int_of_fp(min_fp + 0.01*delta_fp) == min_int );
#endif

return 0;
}