aboutsummaryrefslogtreecommitdiff
path: root/src/elliptic/ilucg.f77
blob: 68f99f5762aa676edead8cd18cedb485a7cdf406 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
      LOGICAL FUNCTION SILUCG(N,IA,JA,A,B,X,ITEMP,RTEMP,EPS,ITER,IE)
      IMPLICIT REAL (A-H,O-Z)
C
C     INCOMPLETE LU DECOMPOSITION-CONJUGATE GRADIENT
C     -          --               -         -
C WHERE:
C     |N| IS THE NUMBER OF EQUATIONS.  IF N < 0, ITEMP AND
C       RTEMP CONTAIN THE ILU FROM A PREVIOUS CALL AND
C       B AND X ARE THE NEW RHS AND INITIAL GUESS.
C     IA IS AN INTEGER ARRAY DIMENSIONED |N|+1.  IA(I) IS THE
C       INDEX INTO ARRAYS JA AND A OF THE FIRST NON-ZERO
C       ELEMENT IN ROW I.  LET MAX=IA(|N|+1)-IA(1).
C     JA IS AN INTEGER ARRAY DIMENSIONED MAX.  JA(K) GIVES
C       THE COLUMN NUMBER OF A(K).
C     A IS A REAL ARRAY DIMENSIONED MAX.  IT CONTAINS THE
C       NONZERO ELEMENTS OF THE MATRIX STORED BY ROW.
C     B CONTAINS THE RHS VECTOR.
C     X IS A REAL ARRAY DIMENSIONED |N|.  ON ENTRY, IT CONTAINS
C       AN INITIAL ESTIMATE; ON EXIT, THE SOLUTION.
C     ITEMP IS AN INTEGER SCRATCH ARRAY DIMENSIONED 3*(|N|+MAX)+2.
C     RTEMP IS AN REAL SCRATCH ARRAY DIMENSIONED 4*|N|+MAX.
C     EPS IS THE CONVERGENCE CRITERIA.  IT SPECIFIES THE RELATIVE
C       ERROR ALLOWED IN THE SOLUTION.  TO BE PRECISE, CONVERGENCE
C       IS DEEMED TO HAVE OCCURED WHEN THE INFINITY-NORM OF THE
C       CHANGE IN THE SOLUTION IN ONE ITERATION IS .LE. EPS * THE
C       INFINITY-NORM OF THE CURRENT SOLUTION.  HOWEVER, IF EPS
C       .LT. 0.0, IT IS INTERNALLY SCALED BY THE MACHINE PRECISION,
C       SO THAT, FOR EXAMPLE, EPS = -256.0 WILL ALLOW THE LAST TWO
C       HEXADECIMAL DIGITS OF THE SOLUTION TO BE IN ERROR.
C     ITER GIVES THE REQUESTED NUMBER OF ITERATIONS, OR IS 0 FOR "NO LIMIT".
C     IE IS AN INTEGER VARIABLE.  FOR NORMAL RETURN, IT GIVES
C       THE NUMBER OF ITERATIONS DONE (NEGATIVE IS NO CONVERGENCE).
C       ON ERROR RETURN, THE ROW IN ERROR.
C
C THE FUNCTION RETURNS .FALSE. IF ALL'S WELL, .TRUE. ON AN ERROR RETURN.
C
C (MODIFIED TO RETURN LOGICAL VALUE, J. THORNBURG, 13/MAY/85.)
C (MODIFIED TO ADD CONVERGENCE CRITERIA, J. THORNBURG, 17/MAY/85.)
C (MODIFIED CONVERGENCE CRITERIA, J. THORNBURG, 4/AUG/89.)
C (MODIFIED TO AVOID SKIP RETURNS, J. THORNBURG, 10/SEP/89.)
C
C REFERENCE:
C     D.S.KERSHAW,"THE INCOMPLETE CHOLESKY-CONJUGATE GRADIENT
C       METHOD FOR INTERATIVE SOLUTION OF LINEAR EQUATIONS",
C       J.COMPUT.PHYS. JAN 1978 PP 43-65
C
      DIMENSION IA(*),JA(*),A(*),B(*),X(*),ITEMP(*),RTEMP(*)
      LOGICAL SLU0
      NP=IABS(N)
      IE=0
      IF (NP.EQ.0) GO TO 20
C CALCULATE INDICES FOR BREAKING UP TEMPORARY ARRAYS.
      N1=NP+1
      MAX=IA(N1)-IA(1)
      ILU=1
      JLU=ILU+N1
      ID=JLU+MAX
      IC=ID+NP
      JC=IC+N1
      JCI=JC+MAX
      IR=1
      IP=IR+NP
      IS1=IP+NP
      IS2=IS1+NP
      IALU=IS2+NP
      IF (N.LT.0) GO TO 10
C DO INCOMPLETE LU DECOMPOSITION
      IF (SLU0(NP,IA,JA,A,ITEMP(IC),ITEMP(JC),ITEMP(JCI),RTEMP(IALU),
     *    ITEMP(ILU),ITEMP(JLU),ITEMP(ID),RTEMP(IR),IE)) GOTO 20
C AND DO CONJUGATE GRADIENT ITERATIONS
C CALL MODIFIED TO ADD ADJUSTABLE CONVERGENCE CRITERIA EPS
C - J. THORNBURG, 17/MAY/85.
10    CALL SNCG0(NP,IA,JA,A,B,X,ITEMP(ILU),ITEMP(JLU),ITEMP(ID),
     *  RTEMP(IALU),RTEMP(IR),RTEMP(IP),RTEMP(IS1),RTEMP(IS2),
     *  EPS,ITER,IE)
      SILUCG = .FALSE.
      RETURN
20    SILUCG = .TRUE.
      RETURN
      END
      LOGICAL FUNCTION SLU0(N,IA,JA,A,IC,JC,JCI,ALU,ILU,JLU,ID,V,IE)
      IMPLICIT REAL (A-H,O-Z)
      DIMENSION IA(*),JA(*),A(*),IC(*),JC(*),JCI(*),
     *  ALU(*),ILU(*),JLU(*),ID(N),V(N)
      LOGICAL NODIAG
      COMMON /ICBD00/ ICBAD
C     INCOMPLETE LU DECOMPOSITION
C WHERE:
C     N,IA,JA, AND A ARE DESCRIBED IN FUNCTION SILUCG
C     IC IS AN INTEGER ARRAY DIMENSIONED N+1, IC(J) GIVES THE
C       INDEX OF THE FIRST NONZERO ELEMENT IN COLMN J IN
C       ARRAY JC.
C     JC IS AN INTEGER ARRAY WITH THE SAME DIMENSION AS A.
C       JC(K) GIVES THE ROW NUMBER OF THE K'TH ELEMENT IN
C       THE COLUMN STRUCTURE.
C     JCI IS AN INTEGER ARRAY WITH THE SAME DIMENSION AS A.
C       JCI(K) GIVES THE INDEX INTO ARRAY A OF THE K'TH ELEMENT
C       OF THE COLUMN STRUCTURE.
C     ALU HAS THE SAME DIMENSION AS A.  ON EXIT, IT WILL
C       CONTAIN THE INCOMPLETE LU DECOMPOSITION OF A WITH THE
C       RECIPROCALS OF THE DIAGONAL ELEMENTS OF U.
C     ILU AND JLU CORRESPONDS TO IA AND JA BUT FOR ALU.
C     ID IS AN INTEGER ARRAY DIMENSIONED N.  IT CONTAINS
C       INDICES TO THE DIAGONAL ELEMENTS OF U.
C     V IS A REAL SCRATCH VECTOR OF LENGTH N.
C     IE GIVES THE ROW NUMBER IN ERROR.
C
C     RETURN VALUE = .FALSE. IF ALL IS WELL, .TRUE. IF ERROR.
C
C NOTE: SLU0 SETS ARGUMENTS IC THROUGH V.
C
      ICBAD=0
C ZERO COUNT OF ZERO DIAGONAL ELEMENTS IN U.
C
C FIRST CHECK STRUCTURE OF A AND BUILD COLUMN STRUCTURE
      DO 10 I=1,N
        IC(I)=0
10    CONTINUE
      DO 30 I=1,N
        KS=IA(I)
        KE=IA(I+1)-1
        NODIAG=.TRUE.
        DO 20 K=KS,KE
          J=JA(K)
          IF (J.LT.1.OR.J.GT.N) GO TO 210
          IC(J)=IC(J)+1
          IF (J.EQ.I) NODIAG=.FALSE.
20      CONTINUE
        IF (NODIAG) GO TO 210
30    CONTINUE
C MAKE IC INTO INDICES
      KOLD=IC(1)
      IC(1)=1
      DO 40 I=1,N
        KNEW=IC(I+1)
        IF (KOLD.EQ.0) GO TO 210
        IC(I+1)=IC(I)+KOLD
        KOLD=KNEW
40    CONTINUE
C SET JC AND JCI FOR COLUMN STRUCTURE
      DO 60 I=1,N
        KS=IA(I)
        KE=IA(I+1)-1
        DO 50 K=KS,KE
          J=JA(K)
          L=IC(J)
          IC(J)=L+1
          JC(L)=I
          JCI(L)=K
50      CONTINUE
60    CONTINUE
C FIX UP IC
      KOLD=IC(1)
      IC(1)=1
      DO 70 I=1,N
        KNEW=IC(I+1)
        IC(I+1)=KOLD
        KOLD=KNEW
70    CONTINUE
C FIND SORTED ROW STRUCTURE FROM SORTED COLUMN STRUCTURE
      NP=N+1
      DO 80 I=1,NP
        ILU(I)=IA(I)
80    CONTINUE
C MOVE ELEMENTS, SET JLU AND ID
      DO 100 J=1,N
        KS=IC(J)
        KE=IC(J+1)-1
        DO 90 K=KS,KE
          I=JC(K)
          L=ILU(I)
          ILU(I)=L+1
          JLU(L)=J
          KK=JCI(K)
          ALU(L)=A(KK)
          IF (I.EQ.J) ID(J)=L
90      CONTINUE
100   CONTINUE
C RESET ILU (COULD JUST USE IA)
      DO 110 I=1,NP
        ILU(I)=IA(I)
110   CONTINUE
C FINISHED WITH SORTED COLUMN AND ROW STRUCTURE
C
C DO LU DECOMPOSITION USING GAUSSIAN ELIMINATION
      DO 120 I=1,N
        V(I)=0.0
120   CONTINUE
      DO 200 IROW=1,N
        I=ID(IROW)
        PIVOT=ALU(I)
        IF (PIVOT.NE.0.0) GO TO 140
C THIS CASE MAKES THE ILU LESS ACCURATE
        ICBAD=ICBAD+1
        KS=ILU(IROW)
        KE=ILU(IROW+1)-1
        DO 130 K=KS,KE
          PIVOT=PIVOT+ABS(ALU(K))
130     CONTINUE
        IF (PIVOT.EQ.0.0) GO TO 220
140     PIVOT=1.0/PIVOT
        ALU(I)=PIVOT
        KKS=I+1
        KKE=ILU(IROW+1)-1
        IF (KKS.GT.KKE) GO TO 160
        DO 150 K=KKS,KKE
          J=JLU(K)
          V(J)=ALU(K)
150     CONTINUE
C FIX L IN COLUMN IROW AND DO PARTIAL LU IN SUBMATRIX
160     KS=IC(IROW)
        KE=IC(IROW+1)-1
        DO 190 K=KS,KE
          I=JC(K)
          IF (I.LE.IROW) GO TO 190
          LS=ILU(I)
          LE=ILU(I+1)-1
          DO 180 L=LS,LE
            J=JLU(L)
            IF (J.LT.IROW) GO TO 180
            IF (J.GT.IROW) GO TO 170
            AMULT=ALU(L)*PIVOT
            ALU(L)=AMULT
            IF (AMULT.EQ.0.0) GO TO 190
            GO TO 180
170         IF (V(J).EQ.0.0) GO TO 180
            ALU(L)=ALU(L)-AMULT*V(J)
180       CONTINUE
190     CONTINUE
C RESET V
        IF (KKS.GT.KKE) GO TO 200
        DO 195 K=KKS,KKE
          J=JLU(K)
          V(J)=0.0
195     CONTINUE
200   CONTINUE
C NORMAL RETURN
      SLU0 = .FALSE.
      RETURN
C ERROR RETURNS
210   IE=I
      SLU0 = .TRUE.
      RETURN
C NORMAL RETURN
220   IE=IROW
      SLU0 = .TRUE.
      RETURN
      END
      SUBROUTINE SNCG0(N,IA,JA,A,B,X,ILU,JLU,ID,ALU,R,P,S1,S2,
     *  EPS,ITER,IE)
      IMPLICIT REAL (A-H,O-Z)
      DIMENSION IA(*),JA(*),A(*),B(N),X(N),ILU(*),JLU(*),ALU(*),ID(N),
     *  R(N),P(N),S1(N),S2(N)
C     NONSYMMETRIC CONJUGATE GRADIENT
C WHERE:
C     N,IA,JA,A,B, AND X ARE DESCRIBED IN SUBROUTINE SILUCG.
C     ILU GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW OF LU.
C     JLU GIVES COLUMN NUMBER.
C     ID GIVES INDEX OF DIAGONAL ELEMENT OF U.
C     ALU HAS NONZERO ELEMENTS OF LU MATRIX STORED BY ROW
C       WITH RECIPROCALS OF DIAGONAL ELEMENTS OF U.
C     R,P,S1, AND S2 ARE VECTORS OF LENGTH N USED IN THE
C       ITERATIONS.
C FOLLOWING PARAMETER ADDED BY J. THORNBURG, 17/MAY/85.
C     EPS IS CONVERGENCE CRITERIA.  (DESCRIBED IN SUBROUTINE
C       SILUCG).
C     ITER IS MAX NUMBER OF ITERATIONS, OR 0 FOR "NO LIMIT".
C     IE GIVES ACTUAL NUMBER OF ITERATIONS, NEGATIVE IF
C       NO CONVERGENCE.
C
C R0=B-A*X0
      CALL SMUL10(N,IA,JA,A,X,R)
      DO 10 I=1,N
        R(I)=B(I)-R(I)
10    CONTINUE
C P0=(UT*U)(-1)*AT*(L*LT)(-1)*R0
C FIRST SOLVE L*LT*S1=R0
      CALL SSUBL0(N,ILU,JLU,ID,ALU,R,S1)
C TIMES TRANSPOSE OF A
      CALL SMUL20(N,IA,JA,A,S1,S2)
C THEN SOLVE UT*U*P=S2
      CALL SSUBU0(N,ILU,JLU,ID,ALU,S2,P)
      IE=0
      RDOT = SGVV(R,S1,N)
C LOOP BEGINS HERE
20    CALL SMUL30(N,ILU,JLU,ID,ALU,P,S2)
      PDOT = SGVV(P,S2,N)
C
      IF (PDOT.EQ.0.0) RETURN
C
      ALPHA=RDOT/PDOT
C EQUATION 9PA                      ALPHA=(R,LINV*R)/(P,UT*U*P)
      XMAX=1.0
      XDIF=0.0
      DO 30 I=1,N
        AP=ALPHA*P(I)
        X(I)=X(I)+AP
C EQUATION 9PB                      X=X+ALPHA*P
        AP=ABS(AP)
        XX=ABS(X(I))
        IF (AP.GT.XDIF) XDIF=AP
        IF (XX.GT.XMAX) XMAX=XX
30    CONTINUE
      IE=IE+1
C
C CONVERGENCE TEST (CHANGED BY J. THORNBURG, 17/MAY/85, 4/AUG/89)
C
      IF ((EPS .GT. 0.0) .AND. (XDIF .LE. EPS * XMAX)) RETURN
      IF ((EPS .LT. 0.0) .AND. (XMAX + XDIF/ABS(EPS) .EQ. XMAX))
     *   RETURN
C
C EXCEEDED ITERATION LIMIT?
C
      IF ((ITER .NE. 0) .AND. (IE .GE. ITER)) GO TO 60
      CALL SMUL10(N,IA,JA,A,P,S2)
      DO 40 I=1,N
        R(I)=R(I)-ALPHA*S2(I)
C EQUATION 9PC                      R=R-ALPHA*A*P
40    CONTINUE
      CALL SSUBL0(N,ILU,JLU,ID,ALU,R,S1)
C     CALL INPROD(R,S1,EDOT,RRDOT,N)
      RRDOT = SGVV(R,S1,N)
      BETA=RRDOT/RDOT
C EQUATION 9PD                      BETA=(R+,LINV*R+)/(R,LINV*R)
      RDOT=RRDOT
      CALL SMUL20(N,IA,JA,A,S1,S2)
      CALL SSUBU0(N,ILU,JLU,ID,ALU,S2,S1)
      DO 50 I=1,N
        P(I)=S1(I)+BETA*P(I)
C EQUATION 9PE                      P=(UT*U)(-1)*AT*(L*LT)(-1)*R+BETA*P
50    CONTINUE
      GO TO 20
60    IE=-IE
      RETURN
      END
      SUBROUTINE SMUL10(N,IA,JA,A,B,X)
      IMPLICIT REAL (A-H,O-Z)
      DIMENSION IA(*),JA(*),A(*),B(N),X(N)
C MULTIPLY A TIMES B TO GET X
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     IA GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW
C     JA GIVES COLUMN NUMBER
C     A CONTAINS THE NONZERO ELEMENTS OF THE NONSYMMETRIC
C       MATRIX STORED BY ROW
C     B IS THE VECTOR
C     X IS THE PRODUCT (MUST BE DIFFERENT FROM B)
C
      DO 20 I=1,N
        KS=IA(I)
        KE=IA(I+1)-1
        SUM=0.0
        DO 10 K=KS,KE
          J=JA(K)
          SUM=SUM+A(K)*B(J)
10      CONTINUE
        X(I)=SUM
20    CONTINUE
      RETURN
      END
      SUBROUTINE SMUL20(N,IA,JA,A,B,X)
      IMPLICIT REAL (A-H,O-Z)
      DIMENSION IA(*),JA(*),A(*),B(N),X(N)
C MULTIPLY TRANSPOSE OF A TIMES B TO GET X
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     IA GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW
C     JA GIVES COLUMN NUMBER
C     A CONTAINS THE NONZERO ELEMENTS OF THE NONSYMMETRIC
C       MATRIX STORED BY ROW
C     B IS THE VECTOR
C     X IS THE PRODUCT (MUST BE DIFFERENT FROM B)
C
      DO 10 I=1,N
        X(I)=0.0
10    CONTINUE
      DO 30 I=1,N
        KS=IA(I)
        KE=IA(I+1)-1
        BB=B(I)
        DO 20 K=KS,KE
          J=JA(K)
          X(J)=X(J)+A(K)*BB
20      CONTINUE
30    CONTINUE
      RETURN
      END
      SUBROUTINE SMUL30(N,ILU,JLU,ID,ALU,B,X)
      IMPLICIT REAL (A-H,O-Z)
      DIMENSION ILU(*),JLU(*),ID(*),ALU(*),B(N),X(N)
C MULTIPLY TRANSPOSE OF U TIMES U TIMES B TO GET X
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     ILU GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW OF LU
C     JLU GIVES COLUMN NUMBER
C     ID GIVES INDEX OF DIAGONAL ELEMENT OF U
C     ALU HAS NONZERO ELEMENTS OF LU MATRIX STORED BY ROW
C       WITH RECIPROCALS OF DIAGONAL ELEMENTS
C     B IS THE VECTOR
C     X IS THE PRODUCT UT*U*B (X MUST BE DIFFERENT FROM B)
C
      DO 10 I=1,N
        X(I)=0.0
10    CONTINUE
      DO 50 I=1,N
        KS=ID(I)+1
        KE=ILU(I+1)-1
        DIAG=1.0/ALU(KS-1)
        XX=DIAG*B(I)
        IF (KS.GT.KE) GO TO 30
        DO 20 K=KS,KE
          J=JLU(K)
          XX=XX+ALU(K)*B(J)
20      CONTINUE
30      X(I)=X(I)+DIAG*XX
        IF (KS.GT.KE) GO TO 50
        DO 40 K=KS,KE
          J=JLU(K)
          X(J)=X(J)+ALU(K)*XX
40      CONTINUE
50    CONTINUE
      RETURN
      END
      SUBROUTINE SSUBU0(N,ILU,JLU,ID,ALU,B,X)
      IMPLICIT REAL (A-H,O-Z)
      DIMENSION ILU(*),JLU(*),ID(*),ALU(*),B(N),X(N)
C DO FORWARD AND BACK SUBSTITUTION TO SOLVE UT*U*X=B
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     ILU GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW OF LU
C     JLU GIVES COLUMN NUMBER
C     ID GIVES INDEX OF DIAGONAL ELEMENT OF U
C     ALU HAS NONZERO ELMENTS OF LU MATRIX STORED BY ROW
C       WITH RECIPROCALS OF DIAGONAL ELEMENTS OF U
C     B IS THE RHS VECTOR
C     X IS THE SOLUTION VECTOR
C
      NP=N+1
      DO 10 I=1,N
        X(I)=B(I)
10    CONTINUE
C FORWARD SUBSTITUTION
      DO 30 I=1,N
        KS=ID(I)+1
        KE=ILU(I+1)-1
        XX=X(I)*ALU(KS-1)
        X(I)=XX
        IF (KS.GT.KE) GO TO 30
        DO 20 K=KS,KE
          J=JLU(K)
          X(J)=X(J)-ALU(K)*XX
20      CONTINUE
30    CONTINUE
C BACK SUBSTITUTION
      DO 60 II=1,N
        I=NP-II
        KS=ID(I)+1
        KE=ILU(I+1)-1
        SUM=0.0
        IF (KS.GT.KE) GO TO 50
        DO 40 K=KS,KE
          J=JLU(K)
          SUM=SUM+ALU(K)*X(J)
40      CONTINUE
50      X(I)=(X(I)-SUM)*ALU(KS-1)
60    CONTINUE
      RETURN
      END
      SUBROUTINE SSUBL0(N,ILU,JLU,ID,ALU,B,X)
      IMPLICIT REAL (A-H,O-Z)
      DIMENSION ILU(*),JLU(*),ID(*),ALU(*),B(N),X(N)
C DO FORWARD AND BACK SUBSTITUTION TO SOLVE L*LT*X=B
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     ILU GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW LU
C     JLU GIVES THE COLUMN NUMBER
C     ID GIVES INDEX OF DIAGONAL ELEMENT OF U
C     ALU HAS NONZERO ELEMENTS OF LU MATRIX STORED BY ROW
C       DIAGONAL ELEMENTS OF L ARE 1.0 AND NOT STORED
C     B IS THE RHS VECTOR
C     X IS THE SOLUTION VECTOR
C
      NP=N+1
      DO 10 I=1,N
        X(I)=B(I)
10    CONTINUE
C FORWARD SUBSTITUTION
      DO 30 I=1,N
        KS=ILU(I)
        KE=ID(I)-1
        IF (KS.GT.KE) GO TO 30
        SUM=0.0
        DO 20 K=KS,KE
          J=JLU(K)
          SUM=SUM+ALU(K)*X(J)
20      CONTINUE
        X(I)=X(I)-SUM
30    CONTINUE
C BACK SUBSTITUTION
      DO 50 II=1,N
        I=NP-II
        KS=ILU(I)
        KE=ID(I)-1
        IF (KS.GT.KE) GO TO 50
        XX=X(I)
        IF (XX.EQ.0.0) GO TO 50
        DO 40 K=KS,KE
          J=JLU(K)
          X(J)=X(J)-ALU(K)*XX
40      CONTINUE
50    CONTINUE
      RETURN
      END
      REAL FUNCTION SGVV(V,W,N)
      IMPLICIT REAL (A-H,O-Z)
      DIMENSION V(N),W(N)
C     SUBROUTINE TO COMPUTE REAL VECTOR DOT PRODUCT.
C
      SUM = 0.0
            DO 10 I = 1,N
            SUM = SUM + V(I)*W(I)
10          CONTINUE
      SGVV = SUM
      RETURN
      END
      LOGICAL FUNCTION DILUCG(N,IA,JA,A,B,X,ITEMP,RTEMP,EPS,ITER,IE)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C     INCOMPLETE LU DECOMPOSITION-CONJUGATE GRADIENT
C     -          --               -         -
C WHERE:
C     |N| IS THE NUMBER OF EQUATIONS.  IF N < 0, ITEMP AND
C       RTEMP CONTAIN THE ILU FROM A PREVIOUS CALL AND
C       B AND X ARE THE NEW RHS AND INITIAL GUESS.
C     IA IS AN INTEGER ARRAY DIMENSIONED |N|+1.  IA(I) IS THE
C       INDEX INTO ARRAYS JA AND A OF THE FIRST NON-ZERO
C       ELEMENT IN ROW I.  LET MAX=IA(|N|+1)-IA(1).
C     JA IS AN INTEGER ARRAY DIMENSIONED MAX.  JA(K) GIVES
C       THE COLUMN NUMBER OF A(K).
C     A IS A DOUBLE PRECISION ARRAY DIMENSIONED MAX.  IT CONTAINS THE
C       NONZERO ELEMENTS OF THE MATRIX STORED BY ROW.
C     B CONTAINS THE RHS VECTOR.
C     X IS A DOUBLE PRECISION ARRAY DIMENSIONED |N|.  ON ENTRY, IT CONTAINS
C       AN INITIAL ESTIMATE; ON EXIT, THE SOLUTION.
C     ITEMP IS AN INTEGER SCRATCH ARRAY DIMENSIONED 3*(|N|+MAX)+2.
C     RTEMP IS A DOUBLE PRECISION SCRATCH ARRAY DIMENSIONED 4*|N|+MAX.
C     EPS IS THE CONVERGENCE CRITERIA.  IT SPECIFIES THE RELATIVE
C       ERROR ALLOWED IN THE SOLUTION.  TO BE PRECISE, CONVERGENCE
C       IS DEEMED TO HAVE OCCURED WHEN THE INFINITY-NORM OF THE
C       CHANGE IN THE SOLUTION IN ONE ITERATION IS .LE. EPS * THE
C       INFINITY-NORM OF THE CURRENT SOLUTION.  HOWEVER, IF EPS
C       .LT. 0.0D0, IT IS INTERNALLY SCALED BY THE MACHINE PRECISION,
C       SO THAT, FOR EXAMPLE, EPS = -256.0 WILL ALLOW THE LAST TWO
C       HEXADECIMAL DIGITS OF THE SOLUTION TO BE IN ERROR.
C     ITER GIVES THE REQUESTED NUMBER OF ITERATIONS, OR IS 0 FOR "NO LIMIT".
C     IE IS AN INTEGER VARIABLE.  FOR NORMAL RETURN, IT GIVES
C       THE NUMBER OF ITERATIONS DONE (NEGATIVE IS NO CONVERGENCE).
C       ON ERROR RETURN, THE ROW IN ERROR.
C
C THE FUNCTION RETURNS .FALSE. IF ALL'S WELL, .TRUE. ON AN ERROR RETURN.
C
C (MODIFIED TO RETURN LOGICAL VALUE, J. THORNBURG, 13/MAY/85.)
C (MODIFIED TO ADD CONVERGENCE CRITERIA, J. THORNBURG, 17/MAY/85.)
C (MODIFIED CONVERGENCE CRITERIA, J. THORNBURG, 4/AUG/89.)
C (MODIFIED TO AVOID SKIP RETURNS, J. THORNBURG, 10/SEP/89.)
C
C REFERENCE:
C     D.S.KERSHAW,"THE INCOMPLETE CHOLESKY-CONJUGATE GRADIENT
C       METHOD FOR INTERATIVE SOLUTION OF LINEAR EQUATIONS",
C       J.COMPUT.PHYS. JAN 1978 PP 43-65
C
      DIMENSION IA(*),JA(*),A(*),B(*),X(*),ITEMP(*),RTEMP(*)
      LOGICAL DLU0
      NP=IABS(N)
      IE=0
      IF (NP.EQ.0) GO TO 20
C CALCULATE INDICES FOR BREAKING UP TEMPORARY ARRAYS.
      N1=NP+1
      MAX=IA(N1)-IA(1)
      ILU=1
      JLU=ILU+N1
      ID=JLU+MAX
      IC=ID+NP
      JC=IC+N1
      JCI=JC+MAX
      IR=1
      IP=IR+NP
      IS1=IP+NP
      IS2=IS1+NP
      IALU=IS2+NP
      IF (N.LT.0) GO TO 10
C DO INCOMPLETE LU DECOMPOSITION
      IF (DLU0(NP,IA,JA,A,ITEMP(IC),ITEMP(JC),ITEMP(JCI),RTEMP(IALU),
     *    ITEMP(ILU),ITEMP(JLU),ITEMP(ID),RTEMP(IR),IE)) GOTO 20
C AND DO CONJUGATE GRADIENT ITERATIONS
C CALL MODIFIED TO ADD ADJUSTABLE CONVERGENCE CRITERIA EPS
C - J. THORNBURG, 17/MAY/85.
10    CALL DNCG0(NP,IA,JA,A,B,X,ITEMP(ILU),ITEMP(JLU),ITEMP(ID),
     *  RTEMP(IALU),RTEMP(IR),RTEMP(IP),RTEMP(IS1),RTEMP(IS2),
     *  EPS,ITER,IE)
      DILUCG = .FALSE.
      RETURN
20    DILUCG = .TRUE.
      RETURN
      END
      LOGICAL FUNCTION DLU0(N,IA,JA,A,IC,JC,JCI,ALU,ILU,JLU,ID,V,IE)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION IA(*),JA(*),A(*),IC(*),JC(*),JCI(*),
     *  ALU(*),ILU(*),JLU(*),ID(N),V(N)
      LOGICAL NODIAG
      COMMON /ICBD00/ ICBAD
C     INCOMPLETE LU DECOMPOSITION
C WHERE:
C     N,IA,JA, AND A ARE DESCRIBED IN SUBROUTINE ILUCG
C     IC IS AN INTEGER ARRAY DIMENSIONED N+1, IC(J) GIVES THE
C       INDEX OF THE FIRST NONZERO ELEMENT IN COLMN J IN
C       ARRAY JC.
C     JC IS AN INTEGER ARRAY WITH THE SAME DIMENSION AS A.
C       JC(K) GIVES THE ROW NUMBER OF THE K'TH ELEMENT IN
C       THE COLUMN STRUCTURE.
C     JCI IS AN INTEGER ARRAY WITH THE SAME DIMENSION AS A.
C       JCI(K) GIVES THE INDEX INTO ARRAY A OF THE K'TH ELEMENT
C       OF THE COLUMN STRUCTURE.
C     ALU HAS THE SAME DIMENSION AS A.  ON EXIT, IT WILL
C       CONTAIN THE INCOMPLETE LU DECOMPOSITION OF A WITH THE
C       RECIPROCALS OF THE DIAGONAL ELEMENTS OF U.
C     ILU AND JLU CORRESPONDS TO IA AND JA BUT FOR ALU.
C     ID IS AN INTEGER ARRAY DIMENSIONED N.  IT CONTAINS
C       INDICES TO THE DIAGONAL ELEMENTS OF U.
C     V IS A REAL SCRATCH VECTOR OF LENGTH N.
C     IE GIVES THE ROW NUMBER IN ERROR.
C
C     RETURN VALUE = .FALSE. IF ALL IS WELL, .TRUE. IF ERROR.
C
C NOTE: DLU0 SETS ARGUMENTS IC THROUGH V.
C
      ICBAD=0
C ZERO COUNT OF ZERO DIAGONAL ELEMENTS IN U.
C
C FIRST CHECK STRUCTURE OF A AND BUILD COLUMN STRUCTURE
      DO 10 I=1,N
        IC(I)=0
10    CONTINUE
      DO 30 I=1,N
        KS=IA(I)
        KE=IA(I+1)-1
        NODIAG=.TRUE.
        DO 20 K=KS,KE
          J=JA(K)
          IF (J.LT.1.OR.J.GT.N) GO TO 210
          IC(J)=IC(J)+1
          IF (J.EQ.I) NODIAG=.FALSE.
20      CONTINUE
        IF (NODIAG) GO TO 210
30    CONTINUE
C MAKE IC INTO INDICES
      KOLD=IC(1)
      IC(1)=1
      DO 40 I=1,N
        KNEW=IC(I+1)
        IF (KOLD.EQ.0) GO TO 210
        IC(I+1)=IC(I)+KOLD
        KOLD=KNEW
40    CONTINUE
C SET JC AND JCI FOR COLUMN STRUCTURE
      DO 60 I=1,N
        KS=IA(I)
        KE=IA(I+1)-1
        DO 50 K=KS,KE
          J=JA(K)
          L=IC(J)
          IC(J)=L+1
          JC(L)=I
          JCI(L)=K
50      CONTINUE
60    CONTINUE
C FIX UP IC
      KOLD=IC(1)
      IC(1)=1
      DO 70 I=1,N
        KNEW=IC(I+1)
        IC(I+1)=KOLD
        KOLD=KNEW
70    CONTINUE
C FIND SORTED ROW STRUCTURE FROM SORTED COLUMN STRUCTURE
      NP=N+1
      DO 80 I=1,NP
        ILU(I)=IA(I)
80    CONTINUE
C MOVE ELEMENTS, SET JLU AND ID
      DO 100 J=1,N
        KS=IC(J)
        KE=IC(J+1)-1
        DO 90 K=KS,KE
          I=JC(K)
          L=ILU(I)
          ILU(I)=L+1
          JLU(L)=J
          KK=JCI(K)
          ALU(L)=A(KK)
          IF (I.EQ.J) ID(J)=L
90      CONTINUE
100   CONTINUE
C RESET ILU (COULD JUST USE IA)
      DO 110 I=1,NP
        ILU(I)=IA(I)
110   CONTINUE
C FINISHED WITH SORTED COLUMN AND ROW STRUCTURE
C
C DO LU DECOMPOSITION USING GAUSSIAN ELIMINATION
      DO 120 I=1,N
        V(I)=0.0D0
120   CONTINUE
      DO 200 IROW=1,N
        I=ID(IROW)
        PIVOT=ALU(I)
        IF (PIVOT.NE.0.0D0) GO TO 140
C THIS CASE MAKES THE ILU LESS ACCURATE
        ICBAD=ICBAD+1
        KS=ILU(IROW)
        KE=ILU(IROW+1)-1
        DO 130 K=KS,KE
          PIVOT=PIVOT+DABS(ALU(K))
130     CONTINUE
        IF (PIVOT.EQ.0.0D0) GO TO 220
140     PIVOT=1.0D0/PIVOT
        ALU(I)=PIVOT
        KKS=I+1
        KKE=ILU(IROW+1)-1
        IF (KKS.GT.KKE) GO TO 160
        DO 150 K=KKS,KKE
          J=JLU(K)
          V(J)=ALU(K)
150     CONTINUE
C FIX L IN COLUMN IROW AND DO PARTIAL LU IN SUBMATRIX
160     KS=IC(IROW)
        KE=IC(IROW+1)-1
        DO 190 K=KS,KE
          I=JC(K)
          IF (I.LE.IROW) GO TO 190
          LS=ILU(I)
          LE=ILU(I+1)-1
          DO 180 L=LS,LE
            J=JLU(L)
            IF (J.LT.IROW) GO TO 180
            IF (J.GT.IROW) GO TO 170
            AMULT=ALU(L)*PIVOT
            ALU(L)=AMULT
            IF (AMULT.EQ.0.0) GO TO 190
            GO TO 180
170         IF (V(J).EQ.0.0D0) GO TO 180
            ALU(L)=ALU(L)-AMULT*V(J)
180       CONTINUE
190     CONTINUE
C RESET V
        IF (KKS.GT.KKE) GO TO 200
        DO 195 K=KKS,KKE
          J=JLU(K)
          V(J)=0.0D0
195     CONTINUE
200   CONTINUE
C NORMAL RETURN
      DLU0 = .FALSE.
      RETURN
C ERROR RETURNS
210   IE=I
      DLU0 = .TRUE.
      RETURN
220   IE=IROW
      DLU0 = .TRUE.
      RETURN
      END
      SUBROUTINE DNCG0(N,IA,JA,A,B,X,ILU,JLU,ID,ALU,R,P,S1,S2,
     *  EPS,ITER,IE)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION IA(*),JA(*),A(*),B(N),X(N),ILU(*),JLU(*),ALU(*),ID(N),
     *  R(N),P(N),S1(N),S2(N)
C     NONSYMMETRIC CONJUGATE GRADIENT
C WHERE:
C     N,IA,JA,A,B, AND X ARE DESCRIBED IN SUBROUTINE DILUCG.
C     ILU GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW OF LU.
C     JLU GIVES COLUMN NUMBER.
C     ID GIVES INDEX OF DIAGONAL ELEMENT OF U.
C     ALU HAS NONZERO ELEMENTS OF LU MATRIX STORED BY ROW
C       WITH RECIPROCALS OF DIAGONAL ELEMENTS OF U.
C     R,P,S1, AND S2 ARE VECTORS OF LENGTH N USED IN THE
C       ITERATIONS.
C FOLLOWING PARAMETER ADDED BY J. THORNBURG, 17/MAY/85.
C     EPS IS CONVERGENCE CRITERIA.  (DESCRIBED IN SUBROUTINE
C       DILUCG).
C     ITER IS MAX NUMBER OF ITERATIONS, OR 0 FOR "NO LIMIT".
C     IE GIVES ACTUAL NUMBER OF ITERATIONS, NEGATIVE IF
C       NO CONVERGENCE.
C
C R0=B-A*X0
      CALL DMUL10(N,IA,JA,A,X,R)
      DO 10 I=1,N
        R(I)=B(I)-R(I)
10    CONTINUE
C P0=(UT*U)(-1)*AT*(L*LT)(-1)*R0
C FIRST SOLVE L*LT*S1=R0
      CALL DSUBL0(N,ILU,JLU,ID,ALU,R,S1)
C TIMES TRANSPOSE OF A
      CALL DMUL20(N,IA,JA,A,S1,S2)
C THEN SOLVE UT*U*P=S2
      CALL DSUBU0(N,ILU,JLU,ID,ALU,S2,P)
      IE=0
C INPROD IS DOT PRODUCT ROUTINE IN *LIBRARY (UBC MATRIX P 28)
C ALL CALLS ON IT COMMENTED OUT AND REPLACED WITH CALLS TO NEW
C ROUTINE DGVV(...); SOURCE CODE FOR LATTER ADDED TO END OF
C THIS FILE.  - J. THORNBURG, 10/MAY/85.
C     CALL INPROD(R,S1,EDOT,RDOT,N)
      RDOT = DGVV(R,S1,N)
C LOOP BEGINS HERE
20    CALL DMUL30(N,ILU,JLU,ID,ALU,P,S2)
C     CALL INPROD(P,S2,EDOT,PDOT,N)
      PDOT = DGVV(P,S2,N)
C
      IF (PDOT.EQ.0.0D0) RETURN
C
      ALPHA=RDOT/PDOT
C EQUATION 9PA                      ALPHA=(R,LINV*R)/(P,UT*U*P)
      XMAX=1.0D0
      XDIF=0.0D0
      DO 30 I=1,N
        AP=ALPHA*P(I)
        X(I)=X(I)+AP
C EQUATION 9PB                      X=X+ALPHA*P
        AP=DABS(AP)
        XX=DABS(X(I))
        IF (AP.GT.XDIF) XDIF=AP
        IF (XX.GT.XMAX) XMAX=XX
30    CONTINUE
      IE=IE+1
C
C CONVERGENCE TEST (CHANGED BY J. THORNBURG, 17/MAY/85, 4/AUG/89)
C
      IF ((EPS .GT. 0.0D0) .AND. (XDIF .LE. EPS * XMAX)) RETURN
      IF ((EPS .LT. 0.0D0) .AND. (XMAX + XDIF/DABS(EPS) .EQ. XMAX))
     *   RETURN
C
C EXCEEDED ITERATION LIMIT?
C
      IF ((ITER .NE. 0) .AND. (IE .GE. ITER)) GO TO 60
      CALL DMUL10(N,IA,JA,A,P,S2)
      DO 40 I=1,N
        R(I)=R(I)-ALPHA*S2(I)
C EQUATION 9PC                      R=R-ALPHA*A*P
40    CONTINUE
      CALL DSUBL0(N,ILU,JLU,ID,ALU,R,S1)
C     CALL INPROD(R,S1,EDOT,RRDOT,N)
      RRDOT = DGVV(R,S1,N)
      BETA=RRDOT/RDOT
C EQUATION 9PD                      BETA=(R+,LINV*R+)/(R,LINV*R)
      RDOT=RRDOT
      CALL DMUL20(N,IA,JA,A,S1,S2)
      CALL DSUBU0(N,ILU,JLU,ID,ALU,S2,S1)
      DO 50 I=1,N
        P(I)=S1(I)+BETA*P(I)
C EQUATION 9PE                      P=(UT*U)(-1)*AT*(L*LT)(-1)*R+BETA*P
50    CONTINUE
      GO TO 20
60    IE=-IE
      RETURN
      END
      SUBROUTINE DMUL10(N,IA,JA,A,B,X)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION IA(*),JA(*),A(*),B(N),X(N)
C MULTIPLY A TIMES B TO GET X
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     IA GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW
C     JA GIVES COLUMN NUMBER
C     A CONTAINS THE NONZERO ELEMENTS OF THE NONSYMMETRIC
C       MATRIX STORED BY ROW
C     B IS THE VECTOR
C     X IS THE PRODUCT (MUST BE DIFFERENT FROM B)
C
      DO 20 I=1,N
        KS=IA(I)
        KE=IA(I+1)-1
        SUM=0.0D0
        DO 10 K=KS,KE
          J=JA(K)
          SUM=SUM+A(K)*B(J)
10      CONTINUE
        X(I)=SUM
20    CONTINUE
      RETURN
      END
      SUBROUTINE DMUL20(N,IA,JA,A,B,X)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION IA(*),JA(*),A(*),B(N),X(N)
C MULTIPLY TRANSPOSE OF A TIMES B TO GET X
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     IA GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW
C     JA GIVES COLUMN NUMBER
C     A CONTAINS THE NONZERO ELEMENTS OF THE NONSYMMETRIC
C       MATRIX STORED BY ROW
C     B IS THE VECTOR
C     X IS THE PRODUCT (MUST BE DIFFERENT FROM B)
C
      DO 10 I=1,N
        X(I)=0.0D0
10    CONTINUE
      DO 30 I=1,N
        KS=IA(I)
        KE=IA(I+1)-1
        BB=B(I)
        DO 20 K=KS,KE
          J=JA(K)
          X(J)=X(J)+A(K)*BB
20      CONTINUE
30    CONTINUE
      RETURN
      END
      SUBROUTINE DMUL30(N,ILU,JLU,ID,ALU,B,X)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION ILU(*),JLU(*),ID(*),ALU(*),B(N),X(N)
C MULTIPLY TRANSPOSE OF U TIMES U TIMES B TO GET X
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     ILU GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW OF LU
C     JLU GIVES COLUMN NUMBER
C     ID GIVES INDEX OF DIAGONAL ELEMENT OF U
C     ALU HAS NONZERO ELEMENTS OF LU MATRIX STORED BY ROW
C       WITH RECIPROCALS OF DIAGONAL ELEMENTS
C     B IS THE VECTOR
C     X IS THE PRODUCT UT*U*B (X MUST BE DIFFERENT FROM B)
C
      DO 10 I=1,N
        X(I)=0.0D0
10    CONTINUE
      DO 50 I=1,N
        KS=ID(I)+1
        KE=ILU(I+1)-1
        DIAG=1.0D0/ALU(KS-1)
        XX=DIAG*B(I)
        IF (KS.GT.KE) GO TO 30
        DO 20 K=KS,KE
          J=JLU(K)
          XX=XX+ALU(K)*B(J)
20      CONTINUE
30      X(I)=X(I)+DIAG*XX
        IF (KS.GT.KE) GO TO 50
        DO 40 K=KS,KE
          J=JLU(K)
          X(J)=X(J)+ALU(K)*XX
40      CONTINUE
50    CONTINUE
      RETURN
      END
      SUBROUTINE DSUBU0(N,ILU,JLU,ID,ALU,B,X)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION ILU(*),JLU(*),ID(*),ALU(*),B(N),X(N)
C DO FORWARD AND BACK SUBSTITUTION TO SOLVE UT*U*X=B
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     ILU GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW OF LU
C     JLU GIVES COLUMN NUMBER
C     ID GIVES INDEX OF DIAGONAL ELEMENT OF U
C     ALU HAS NONZERO ELMENTS OF LU MATRIX STORED BY ROW
C       WITH RECIPROCALS OF DIAGONAL ELEMENTS OF U
C     B IS THE RHS VECTOR
C     X IS THE SOLUTION VECTOR
C
      NP=N+1
      DO 10 I=1,N
        X(I)=B(I)
10    CONTINUE
C FORWARD SUBSTITUTION
      DO 30 I=1,N
        KS=ID(I)+1
        KE=ILU(I+1)-1
        XX=X(I)*ALU(KS-1)
        X(I)=XX
        IF (KS.GT.KE) GO TO 30
        DO 20 K=KS,KE
          J=JLU(K)
          X(J)=X(J)-ALU(K)*XX
20      CONTINUE
30    CONTINUE
C BACK SUBSTITUTION
      DO 60 II=1,N
        I=NP-II
        KS=ID(I)+1
        KE=ILU(I+1)-1
        SUM=0.0D0
        IF (KS.GT.KE) GO TO 50
        DO 40 K=KS,KE
          J=JLU(K)
          SUM=SUM+ALU(K)*X(J)
40      CONTINUE
50      X(I)=(X(I)-SUM)*ALU(KS-1)
60    CONTINUE
      RETURN
      END
      SUBROUTINE DSUBL0(N,ILU,JLU,ID,ALU,B,X)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION ILU(*),JLU(*),ID(*),ALU(*),B(N),X(N)
C DO FORWARD AND BACK SUBSTITUTION TO SOLVE L*LT*X=B
C WHERE:
C     N IS THE ORDER OF THE MATRIX
C     ILU GIVES INDEX OF FIRST NONZERO ELEMENT IN ROW LU
C     JLU GIVES THE COLUMN NUMBER
C     ID GIVES INDEX OF DIAGONAL ELEMENT OF U
C     ALU HAS NONZERO ELEMENTS OF LU MATRIX STORED BY ROW
C       DIAGONAL ELEMENTS OF L ARE 1.0 AND NOT STORED
C     B IS THE RHS VECTOR
C     X IS THE SOLUTION VECTOR
C
      NP=N+1
      DO 10 I=1,N
        X(I)=B(I)
10    CONTINUE
C FORWARD SUBSTITUTION
      DO 30 I=1,N
        KS=ILU(I)
        KE=ID(I)-1
        IF (KS.GT.KE) GO TO 30
        SUM=0.0D0
        DO 20 K=KS,KE
          J=JLU(K)
          SUM=SUM+ALU(K)*X(J)
20      CONTINUE
        X(I)=X(I)-SUM
30    CONTINUE
C BACK SUBSTITUTION
      DO 50 II=1,N
        I=NP-II
        KS=ILU(I)
        KE=ID(I)-1
        IF (KS.GT.KE) GO TO 50
        XX=X(I)
        IF (XX.EQ.0.0) GO TO 50
        DO 40 K=KS,KE
          J=JLU(K)
          X(J)=X(J)-ALU(K)*XX
40      CONTINUE
50    CONTINUE
      RETURN
      END
      DOUBLE PRECISION FUNCTION DGVV(V,W,N)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION V(N),W(N)
C     SUBROUTINE TO COMPUTE DOUBLE PRECISION VECTOR DOT PRODUCT.
C
      SUM = 0.0D0
            DO 10 I = 1,N
            SUM = SUM + V(I)*W(I)
10          CONTINUE
      DGVV = SUM
      RETURN
      END