aboutsummaryrefslogtreecommitdiff
path: root/src/driver/setup.cc
blob: 79f34b380f943f286a35b3f12db5a0194a6c9504 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
// setup.cc -- top level driver to setup our persistent data structures
// $Header$
//
// <<<prototypes for functions local to this file>>>
// <<<access to persistent data>>>
//
// AHFinderDirect_setup - top-level driver to setup persistent data structures
///
/// decode_method - decode the  method  parameter
/// decode_verbose_level - decode the  verbose_level  parameter
///
/// allocate_horizons_to_processor - choose which horizons this proc will find
///
/// choose_patch_system_type - choose patch system type
///

#include <assert.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <string.h>

#include <vector>

#include "util_Table.h"
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "SpaceMask.h"			// from thorn SpaceMask

#include "config.h"
#include "stdc.h"
#include "../jtutil/util.hh"
#include "../jtutil/array.hh"
#include "../jtutil/cpm_map.hh"
#include "../jtutil/linear_map.hh"
using jtutil::error_exit;

#include "../patch/coords.hh"
#include "../patch/grid.hh"
#include "../patch/fd_grid.hh"
#include "../patch/patch.hh"
#include "../patch/patch_edge.hh"
#include "../patch/patch_interp.hh"
#include "../patch/ghost_zone.hh"
#include "../patch/patch_system.hh"

#include "../elliptic/Jacobian.hh"

#include "../gr/gfns.hh"
#include "../gr/gr.hh"

#include "horizon_sequence.hh"
#include "BH_diagnostics.hh"
#include "driver.hh"

// all the code in this file is inside this namespace
namespace AHFinderDirect
	  {

//******************************************************************************

//
// ***** prototypes for functions local to this file *****
//

namespace {
enum method
  decode_method(const char method_string[]);
enum verbose_level
  decode_verbose_level(const char verbose_level_string[]);

int allocate_horizons_to_processor(int N_procs, int my_proc,
				   int N_horizons, bool multiproc_flag,
                                   const CCTK_INT depends_on[],
				   horizon_sequence& my_hs,
				   const struct verbose_info& verbose_info);

enum patch_system::patch_system_type
  choose_patch_system_type(const char grid_domain[],
			   const char grid_bitant_plane[],
			   const char grid_quadrant_direction[],
			   const char grid_rotation_axis[],
			   fp origin_x, fp origin_y, fp origin_z);
	  }

void set_initial_guess_parameters(struct AH_data& AH_data, const int hn,
                                  const fp ini_origin_x, const fp ini_origin_y, const fp ini_origin_z);





//******************************************************************************

//
// This function is used to setup initial guesses either from 
// the corresponding parameters, or from a custom ini_origin_*.
// The latter is necessary when tracking with a grid scalar.
//
//

void set_initial_guess_parameters(struct AH_data& AH_data, const int hn,
                                  const fp ini_origin_x, const fp ini_origin_y, const fp ini_origin_z)
{
DECLARE_CCTK_PARAMETERS;

                AH_data.initial_guess_info.method
			= decode_initial_guess_method(initial_guess_method[hn]);
                AH_data.initial_guess_info.reset_horizon_after_not_finding
                        = reset_horizon_after_not_finding[hn];
		// ... read from named file
		AH_data.initial_guess_info.read_from_named_file_info.file_name
			= initial_guess__read_from_named_file__file_name[hn];

if (!track_origin_from_grid_scalar[hn]) {

		// ... Kerr/Kerr
		AH_data.initial_guess_info.Kerr_Kerr_info.x_posn
			= initial_guess__Kerr_Kerr__x_posn[hn];
		AH_data.initial_guess_info.Kerr_Kerr_info.y_posn
			= initial_guess__Kerr_Kerr__y_posn[hn];
		AH_data.initial_guess_info.Kerr_Kerr_info.z_posn
			= initial_guess__Kerr_Kerr__z_posn[hn];
		AH_data.initial_guess_info.Kerr_Kerr_info.mass
			= initial_guess__Kerr_Kerr__mass[hn];
		AH_data.initial_guess_info.Kerr_Kerr_info.spin
			= initial_guess__Kerr_Kerr__spin[hn];
		// ... Kerr/Kerr-Schild
		AH_data.initial_guess_info.Kerr_KerrSchild_info.x_posn
			= initial_guess__Kerr_KerrSchild__x_posn[hn];
		AH_data.initial_guess_info.Kerr_KerrSchild_info.y_posn
			= initial_guess__Kerr_KerrSchild__y_posn[hn];
		AH_data.initial_guess_info.Kerr_KerrSchild_info.z_posn
			= initial_guess__Kerr_KerrSchild__z_posn[hn];
		AH_data.initial_guess_info.Kerr_KerrSchild_info.mass
			= initial_guess__Kerr_KerrSchild__mass[hn];
		AH_data.initial_guess_info.Kerr_KerrSchild_info.spin
			= initial_guess__Kerr_KerrSchild__spin[hn];
		// ... coordinate sphere
		AH_data.initial_guess_info.coord_sphere_info.x_center
			= initial_guess__coord_sphere__x_center[hn];
		AH_data.initial_guess_info.coord_sphere_info.y_center
			= initial_guess__coord_sphere__y_center[hn];
		AH_data.initial_guess_info.coord_sphere_info.z_center
			= initial_guess__coord_sphere__z_center[hn];
		AH_data.initial_guess_info.coord_sphere_info.radius
			= initial_guess__coord_sphere__radius[hn];
		// ... coordinate ellipsoid
		AH_data.initial_guess_info.coord_ellipsoid_info.x_center
			= initial_guess__coord_ellipsoid__x_center[hn];
		AH_data.initial_guess_info.coord_ellipsoid_info.y_center
			= initial_guess__coord_ellipsoid__y_center[hn];
		AH_data.initial_guess_info.coord_ellipsoid_info.z_center
			= initial_guess__coord_ellipsoid__z_center[hn];
		AH_data.initial_guess_info.coord_ellipsoid_info.x_radius
			= initial_guess__coord_ellipsoid__x_radius[hn];
		AH_data.initial_guess_info.coord_ellipsoid_info.y_radius
			= initial_guess__coord_ellipsoid__y_radius[hn];
		AH_data.initial_guess_info.coord_ellipsoid_info.z_radius
			= initial_guess__coord_ellipsoid__z_radius[hn];

} else {

		// ... Kerr/Kerr
		AH_data.initial_guess_info.Kerr_Kerr_info.x_posn
			= ini_origin_x;
		AH_data.initial_guess_info.Kerr_Kerr_info.y_posn
			= ini_origin_y;
		AH_data.initial_guess_info.Kerr_Kerr_info.z_posn
			= ini_origin_z;
		AH_data.initial_guess_info.Kerr_Kerr_info.mass
			= initial_guess__Kerr_Kerr__mass[hn];
		AH_data.initial_guess_info.Kerr_Kerr_info.spin
			= initial_guess__Kerr_Kerr__spin[hn];
		// ... Kerr/Kerr-Schild
		AH_data.initial_guess_info.Kerr_KerrSchild_info.x_posn
			= ini_origin_x;
		AH_data.initial_guess_info.Kerr_KerrSchild_info.y_posn
			= ini_origin_y;
		AH_data.initial_guess_info.Kerr_KerrSchild_info.z_posn
			= ini_origin_z;
		AH_data.initial_guess_info.Kerr_KerrSchild_info.mass
			= initial_guess__Kerr_KerrSchild__mass[hn];
		AH_data.initial_guess_info.Kerr_KerrSchild_info.spin
			= initial_guess__Kerr_KerrSchild__spin[hn];
		// ... coordinate sphere
		AH_data.initial_guess_info.coord_sphere_info.x_center
			= ini_origin_x;
		AH_data.initial_guess_info.coord_sphere_info.y_center
			= ini_origin_y;
		AH_data.initial_guess_info.coord_sphere_info.z_center
			= ini_origin_z;
		AH_data.initial_guess_info.coord_sphere_info.radius
			= initial_guess__coord_sphere__radius[hn];
		// ... coordinate ellipsoid
		AH_data.initial_guess_info.coord_ellipsoid_info.x_center
			= ini_origin_x;
		AH_data.initial_guess_info.coord_ellipsoid_info.y_center
			= ini_origin_y;
		AH_data.initial_guess_info.coord_ellipsoid_info.z_center
			= ini_origin_z;
		AH_data.initial_guess_info.coord_ellipsoid_info.x_radius
			= initial_guess__coord_ellipsoid__x_radius[hn];
		AH_data.initial_guess_info.coord_ellipsoid_info.y_radius
			= initial_guess__coord_ellipsoid__y_radius[hn];
		AH_data.initial_guess_info.coord_ellipsoid_info.z_radius
			= initial_guess__coord_ellipsoid__z_radius[hn];

}

}

//******************************************************************************

//
// ***** access to persistent data *****
//
extern struct state state;

//******************************************************************************

//
// This function is called by the Cactus scheduler to set up all our
// persistent data structures.  (These are stored in  struct state .)
//
extern "C"
  void AHFinderDirect_setup(CCTK_ARGUMENTS)
{
DECLARE_CCTK_ARGUMENTS
DECLARE_CCTK_PARAMETERS

CCTK_VInfo(CCTK_THORNSTRING,
	   "setting up AHFinderDirect data structures");


//
// check parameters
//
int need_zones = 0;
for (int n=1; n<N_horizons; ++n) {
  need_zones = jtutil::max(need_zones, N_zones_per_right_angle[n]);
}
if (need_zones > max_N_zones_per_right_angle) {
  CCTK_VWarn (FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
              "AHFinderDirect_setup(): "
              "The parameter max_N_zones_per_right_angle must be at least the maximum of all N_zones_per_right_angle[] parameters.  "
              "Set max_N_zones_per_right_angle to %d or higher to continue.",
              need_zones);      /*NOTREACHED*/
 }
for (int n=1; n<N_horizons; ++n) {
  if (depends_on[n] != 0) {
    assert (depends_on[n] >= 1 && depends_on[n] < n);
    if (N_zones_per_right_angle[n] != N_zones_per_right_angle[depends_on[n]]) {
      CCTK_VWarn (FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
                  "AHFinderDirect_setup(): "
                  "The parameter N_zones_per_right_angle must be the same for a horizon as for the horizon on which it depends.  "
                  "Horizon %d depends on horizon %d, but they have different resolutions.",
                  n, depends_on[n]); /*NOTREACHED*/
    }
  }
}


//
// basic setup
//
state.method = decode_method(method);

state.error_info.warn_level__point_outside__initial
   = warn_level__point_outside__initial;
state.error_info.warn_level__point_outside__subsequent
   = warn_level__point_outside__subsequent;
state.error_info.warn_level__skipping_finite_check
   = warn_level__skipping_finite_check;
state.error_info.warn_level__nonfinite_geometry
   = warn_level__nonfinite_geometry;
state.error_info.warn_level__gij_not_positive_definite__initial
   = warn_level__gij_not_positive_definite__initial;
state.error_info.warn_level__gij_not_positive_definite__subsequent
   = warn_level__gij_not_positive_definite__subsequent;

struct verbose_info& verbose_info = state.verbose_info;
verbose_info.verbose_level = decode_verbose_level(verbose_level);
verbose_info.print_physics_highlights
   = (state.verbose_info.verbose_level >= verbose_level__physics_highlights);
verbose_info.print_physics_details
   = (state.verbose_info.verbose_level >= verbose_level__physics_details);
verbose_info.print_algorithm_highlights
   = (state.verbose_info.verbose_level >= verbose_level__algorithm_highlights);
verbose_info.print_algorithm_details
   = (state.verbose_info.verbose_level >= verbose_level__algorithm_details);
verbose_info.print_algorithm_debug
   = (state.verbose_info.verbose_level >= verbose_level__algorithm_debug);

state.timer_handle = (print_timing_stats != 0) ? CCTK_TimerCreate("finding apparent horizons") : -1;

state.N_procs = CCTK_nProcs(cctkGH);
state.my_proc = CCTK_MyProc(cctkGH);

state.N_horizons = N_horizons;
state.N_active_procs = 0;	// dummy value, will be set properly later
CCTK_VInfo(CCTK_THORNSTRING,
           "           to search for %d horizon%s on %d processor%s",
	   state.N_horizons, ((state.N_horizons == 1) ? "" : "s"),
	   state.N_procs, ((state.N_procs == 1) ? "" : "s"));


//
// Cactus grid info
//
if (verbose_info.print_algorithm_highlights)
   then CCTK_VInfo(CCTK_THORNSTRING, "   setting up Cactus grid info");
struct cactus_grid_info& cgi = state.cgi;
cgi.GH = cctkGH;
cgi.coord_system_handle = CCTK_CoordSystemHandle(coordinate_system_name);
if (cgi.coord_system_handle < 0)
   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"AHFinderDirect_setup(): can't find Cactus coordinate system \"%s\"!",
		   coordinate_system_name);			/*NOTREACHED*/
cgi.use_Cactus_conformal_metric = false;	// dummy value, may change later

cgi.mask_varindex    = Cactus_gridfn_varindex("AHFinderDirect::ahmask");
cgi.g_dd_11_varindex = Cactus_gridfn_varindex("ADMBase::gxx");
cgi.g_dd_12_varindex = Cactus_gridfn_varindex("ADMBase::gxy");
cgi.g_dd_13_varindex = Cactus_gridfn_varindex("ADMBase::gxz");
cgi.g_dd_22_varindex = Cactus_gridfn_varindex("ADMBase::gyy");
cgi.g_dd_23_varindex = Cactus_gridfn_varindex("ADMBase::gyz");
cgi.g_dd_33_varindex = Cactus_gridfn_varindex("ADMBase::gzz");
cgi.K_dd_11_varindex = Cactus_gridfn_varindex("ADMBase::kxx");
cgi.K_dd_12_varindex = Cactus_gridfn_varindex("ADMBase::kxy");
cgi.K_dd_13_varindex = Cactus_gridfn_varindex("ADMBase::kxz");
cgi.K_dd_22_varindex = Cactus_gridfn_varindex("ADMBase::kyy");
cgi.K_dd_23_varindex = Cactus_gridfn_varindex("ADMBase::kyz");
cgi.K_dd_33_varindex = Cactus_gridfn_varindex("ADMBase::kzz");
cgi.psi_varindex     = Cactus_gridfn_varindex("StaticConformal::psi");


//
// geometry info
//
if (verbose_info.print_algorithm_highlights)
   then CCTK_VInfo(CCTK_THORNSTRING, "   setting up geometry interpolator");
struct geometry_info& gi = state.gi;
gi.hardwire_Schwarzschild_EF_geometry
	= (hardwire_Schwarzschild_EF_geometry != 0);

gi.operator_handle = CCTK_InterpHandle(geometry_interpolator_name);
if (gi.operator_handle < 0)
   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"AHFinderDirect_setup(): couldn't find interpolator \"%s\"!",
		   geometry_interpolator_name);		/*NOTREACHED*/
gi.param_table_handle = Util_TableCreateFromString(geometry_interpolator_pars);
if (gi.param_table_handle < 0)
   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"AHFinderDirect_setup(): bad geometry-interpolator parameter(s) \"%s\"!",
		   geometry_interpolator_pars);		/*NOTREACHED*/

gi.geometry__Schwarzschild_EF__mass     = geometry__Schwarzschild_EF__mass;
gi.geometry__Schwarzschild_EF__x_posn   = geometry__Schwarzschild_EF__x_posn;
gi.geometry__Schwarzschild_EF__y_posn   = geometry__Schwarzschild_EF__y_posn;
gi.geometry__Schwarzschild_EF__z_posn   = geometry__Schwarzschild_EF__z_posn;
gi.geometry__Schwarzschild_EF__epsilon  = geometry__Schwarzschild_EF__epsilon;
gi.geometry__Schwarzschild_EF__Delta_xyz= geometry__Schwarzschild_EF__Delta_xyz;

gi.check_that_h_is_finite        = (check_that_h_is_finite        != 0);
gi.check_that_geometry_is_finite = (check_that_geometry_is_finite != 0);


//
// Jacobian info
//
struct Jacobian_info& Jac_info = state.Jac_info;
Jac_info.Jacobian_compute_method
	= decode_Jacobian_compute_method(Jacobian_compute_method);
Jac_info.Jacobian_store_solve_method
	= decode_Jacobian_store_solve_method(Jacobian_store_solve_method);
Jac_info.perturbation_amplitude = Jacobian_perturbation_amplitude;


//
// solver info
//
struct solver_info& solver_info = state.solver_info;
solver_info.debugging_output_at_each_Newton_iteration
			= (debugging_output_at_each_Newton_iteration != 0);
solver_info.linear_solver_pars.ILUCG_pars.error_tolerance
	= ILUCG__error_tolerance;
solver_info.linear_solver_pars.ILUCG_pars.limit_CG_iterations
	= (ILUCG__limit_CG_iterations != 0);
solver_info.linear_solver_pars.UMFPACK_pars.N_II_iterations
	= UMFPACK__N_II_iterations;
solver_info.max_Newton_iterations__initial
	= max_Newton_iterations__initial;
solver_info.max_Newton_iterations__subsequent
	= max_Newton_iterations__subsequent;
solver_info.max_allowable_Delta_h_over_h = max_allowable_Delta_h_over_h;
solver_info.Theta_norm_for_convergence   = Theta_norm_for_convergence;
solver_info.max_allowable_Theta          = max_allowable_Theta;
solver_info.max_allowable_Theta_growth_iterations
                                       = max_allowable_Theta_growth_iterations;
solver_info.max_allowable_Theta_nonshrink_iterations
                                    = max_allowable_Theta_nonshrink_iterations;
// ... horizon numbers run from 1 to N_horizons inclusive
//     so the array size is N_horizons+1
solver_info.max_allowable_horizon_radius = new fp[state.N_horizons+1];
	  {
	for (int hn = 0 ; hn <= N_horizons ; ++hn)
	{
	solver_info.max_allowable_horizon_radius[hn]
		= max_allowable_horizon_radius[hn];
	}
	  }
solver_info.want_expansion_gradients = want_expansion_gradients;


//
// I/O info
//
struct IO_info& IO_info = state.IO_info;
IO_info.output_ASCII_files = (output_ASCII_files != 0);
IO_info.output_HDF5_files = (output_HDF5_files != 0);
IO_info.output_initial_guess = (output_initial_guess != 0);
IO_info.output_h_every     = output_h_every;
IO_info.output_Theta_every = output_Theta_every;
IO_info.output_mean_curvature_every = output_mean_curvature_every;
IO_info.output_h     = false;	// dummy value
IO_info.output_Theta = false;	// dummy value
IO_info.output_mean_curvature = false;	// dummy value

IO_info.output_BH_diagnostics              = (output_BH_diagnostics != 0);
IO_info.BH_diagnostics_directory
	= (strlen(BH_diagnostics_directory) == 0)
	  ? /* IO:: */ out_dir
	  : BH_diagnostics_directory;
IO_info.BH_diagnostics_base_file_name      = BH_diagnostics_base_file_name;
IO_info.BH_diagnostics_file_name_extension = BH_diagnostics_file_name_extension;

IO_info.output_ghost_zones_for_h  = (output_ghost_zones_for_h != 0);
IO_info.ASCII_gnuplot_file_name_extension = ASCII_gnuplot_file_name_extension;
IO_info.HDF5_file_name_extension          = HDF5_file_name_extension;
IO_info.h_directory
	= (strlen(h_directory) == 0)
	  ? /* IO:: */ out_dir
	  : h_directory;
IO_info.h_base_file_name         = h_base_file_name;
IO_info.Theta_base_file_name     = Theta_base_file_name;
IO_info.mean_curvature_base_file_name     = mean_curvature_base_file_name;
IO_info.Delta_h_base_file_name   = Delta_h_base_file_name;
IO_info.h_min_digits             = h_min_digits;
IO_info.Jacobian_base_file_name  = Jacobian_base_file_name;
IO_info.output_OpenDX_control_files  = (output_OpenDX_control_files != 0);
IO_info.OpenDX_control_file_name_extension = OpenDX_control_file_name_extension;
IO_info.time_iteration = 0;
IO_info.time           = 0.0;


//
// other misc setup
//
state.BH_diagnostics_info.integral_method
   = patch::decode_integration_method(integral_method);


//
// mask parameters
//
struct mask_info& mask_info = state.mask_info;
mask_info.set_mask_for_any_horizon = false;
// ... horizon numbers run from 1 to N_horizons inclusive
//     so the array size is N_horizons+1
mask_info.set_mask_for_this_horizon = new bool[N_horizons+1];
	  {
	for (int hn = 1 ; hn <= N_horizons ; ++hn)
	{
	mask_info.set_mask_for_this_horizon[hn]
		= (set_mask_for_all_horizons != 0)
		  || (set_mask_for_individual_horizon[hn] != 0);
	mask_info.set_mask_for_any_horizon
		|= mask_info.set_mask_for_this_horizon[hn];
	}
	  }
if (mask_info.set_mask_for_any_horizon)
   then {
	mask_info.radius_multiplier  = mask_radius_multiplier;
	mask_info.radius_offset      = mask_radius_offset;
	mask_info.buffer_thickness   = mask_buffer_thickness;
	mask_info.mask_is_noshrink   = mask_is_noshrink;
	mask_info.min_horizon_radius_points_for_mask
				     = min_horizon_radius_points_for_mask;
	mask_info.set_old_style_mask = (set_old_style_mask != 0);
	mask_info.set_new_style_mask = (set_new_style_mask != 0);
	if (mask_info.set_old_style_mask)
	   then {
		struct mask_info::old_style_mask_info& osmi
			= mask_info.old_style_mask_info;
		osmi.gridfn_name     = old_style_mask_gridfn_name;
		osmi.gridfn_varindex = Cactus_gridfn_varindex(osmi.gridfn_name);
		osmi.gridfn_dataptr  = NULL;	// dummy value; fixup later
		osmi.inside_value  = old_style_mask_inside_value;
		osmi.buffer_value  = old_style_mask_buffer_value;
		osmi.outside_value = old_style_mask_outside_value;
		}
	if (mask_info.set_new_style_mask)
	   then {
		struct mask_info::new_style_mask_info& nsmi
			= mask_info.new_style_mask_info;
		nsmi.gridfn_name     = new_style_mask_gridfn_name;
		nsmi.gridfn_varindex = Cactus_gridfn_varindex(nsmi.gridfn_name);
		nsmi.gridfn_dataptr  = NULL;	// dummy value; fixup later
		nsmi.bitfield_name   = new_style_mask_bitfield_name;
		nsmi.bitfield_bitmask = 0;	// dummy value; fixup later
		nsmi.inside_value    = new_style_mask_inside_value;
		nsmi.buffer_value    = new_style_mask_buffer_value;
		nsmi.outside_value   = new_style_mask_outside_value;
		nsmi.inside_bitvalue = 0;	// dummy value; fixup later
		nsmi.buffer_bitvalue = 0;	// dummy value; fixup later
		nsmi.outside_bitvalue = 0;	// dummy value; fixup later
		}
	}


//
// (genuine) horizon sequence for this processor
//
state.my_hs = new horizon_sequence(state.N_horizons);
horizon_sequence& hs = *state.my_hs;

//
// if we're going to actually find horizons
//    we spread the horizons over multiple processors for maximum efficiency,
// otherwise (we're just doing testing/debugging computations, so)
//    we allocate all the horizons to processor #0 for simplicity
//
const bool multiproc_flag = (state.method == method__find_horizons);
state.N_active_procs
   = allocate_horizons_to_processor(state.N_procs, state.my_proc,
				    state.N_horizons, multiproc_flag,
                                    depends_on,
				    hs,
				    verbose_info);

// ... horizon numbers run from 1 to N_horizons inclusive
//     so the array size is N_horizons+1
state.AH_data_array = new AH_data*[N_horizons+1];
	  {
	for (int hn = 0 ; hn <= N_horizons ; ++hn)
	{
	state.AH_data_array[hn] = NULL;
	}
	  }


//
// horizon-specific info for each horizon
//

// set up the interpatch interpolator
if (verbose_info.print_algorithm_highlights)
   then CCTK_VInfo(CCTK_THORNSTRING, "   setting up interpatch interpolator");
const int ip_interp_handle = CCTK_InterpHandle(interpatch_interpolator_name);
if (ip_interp_handle < 0)
   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"AHFinderDirect_setup(): couldn't find interpatch interpolator \"%s\"!",
		   interpatch_interpolator_name);		/*NOTREACHED*/
const int ip_interp_param_table_handle
	= Util_TableCreateFromString(interpatch_interpolator_pars);
if (ip_interp_param_table_handle < 0)
   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"AHFinderDirect_setup(): bad interpatch-interpolator parameter(s) \"%s\"!",
		   interpatch_interpolator_pars);		/*NOTREACHED*/

// set up the surface interpolator if it's going to be used
int surface_interp_handle = -1;
int surface_interp_param_table_handle = -1;
if (strlen(surface_interpolator_name) > 0)
   then {
	if (verbose_info.print_algorithm_highlights)
	   then CCTK_VInfo(CCTK_THORNSTRING,
			   "   setting up surface interpolator");
	surface_interp_handle = CCTK_InterpHandle(surface_interpolator_name);
	if (surface_interp_handle < 0)
	   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"AHFinderDirect_setup(): couldn't find surface interpolator \"%s\"!",
			   surface_interpolator_name);		/*NOTREACHED*/
	surface_interp_param_table_handle
		= Util_TableCreateFromString(surface_interpolator_pars);
	if (surface_interp_param_table_handle < 0)
	   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"AHFinderDirect_setup(): bad surface-interpolator parameter(s) \"%s\"!",
			   surface_interpolator_pars);		/*NOTREACHED*/
	}

// setup all horizons on this processor,
// with full-fledged patch systems for genuine horizons
// and skeletal patch systems for others
	  {
	for (int hn = 1 ; hn <= hs.N_horizons() ; ++hn)
	{
	const bool genuine_flag = hs.is_hn_genuine(hn);
	state.AH_data_array[hn] = new AH_data;
	struct AH_data& AH_data = *state.AH_data_array[hn];

	if (verbose_info.print_algorithm_highlights)
	   then CCTK_VInfo(CCTK_THORNSTRING,
			   "   setting up %s data structures for horizon %d",
			   (genuine_flag ? "full-fledged" : "skeletal"),
			   hn);

	// decide what type of patch system this one should be
	const enum patch_system::patch_system_type ps_type
	   = STRING_EQUAL(patch_system_type[hn], "match Cactus grid symmetry")
	     ? // choose a patch system type based on grid:: parameters
	       // ... we inherit from grid, and we ask for some of its
	       //     parameters in our param.ccl file; these appear as
	       //     ordinary Cactus parameters here, so (eg)
	       //     grid::domain is just "domain" here
	       choose_patch_system_type(/* grid:: */ domain,
					/* grid:: */ bitant_plane,
					/* grid:: */ quadrant_direction,
					/* grid:: */ rotation_axis,
					origin_x[hn],
					origin_y[hn],
					origin_z[hn])
	     : patch_system::type_of_name(patch_system_type[hn]);

	// create the patch system
	AH_data.ps_ptr
	   = new patch_system(origin_x[hn], origin_y[hn], origin_z[hn],
			      ps_type,
			      ghost_zone_width, patch_overlap_width,
			      N_zones_per_right_angle[hn],
			      gfns::nominal_min_gfn,
			      (genuine_flag ? gfns::nominal_max_gfn
					    : gfns::skeletal_nominal_max_gfn),
			      gfns::ghosted_min_gfn, gfns::ghosted_max_gfn,
			      ip_interp_handle, ip_interp_param_table_handle,
			      surface_interp_handle,
			      surface_interp_param_table_handle,
			      true, verbose_info.print_algorithm_details);
	patch_system& ps = *AH_data.ps_ptr;
	if (genuine_flag)
	   then ps.set_gridfn_to_constant(0.0, gfns::gfn__zero);
	if (genuine_flag)
	   then ps.set_gridfn_to_constant(1.0, gfns::gfn__one);

	AH_data.Jac_ptr = genuine_flag
			  ? new_Jacobian(Jac_info.Jacobian_store_solve_method,
					 ps,
					 verbose_info.print_algorithm_details)
			  : NULL;

        AH_data.compute_info.surface_definition =
          STRING_EQUAL(surface_definition[hn], "expansion")
          ? definition_expansion
          : STRING_EQUAL(surface_definition[hn], "inner expansion")
          ? definition_inner_expansion
          : STRING_EQUAL(surface_definition[hn], "mean curvature")
          ? definition_mean_curvature
          : STRING_EQUAL(surface_definition[hn], "expansion product")
          ? definition_expansion_product
          : (CCTK_WARN (0, "internal error"), definition_error);
        AH_data.compute_info.surface_modification =
          STRING_EQUAL(surface_modification[hn], "none")
          ? modification_none
          : STRING_EQUAL(surface_modification[hn], "radius")
          ? modification_radius
          : STRING_EQUAL(surface_modification[hn], "radius^2")
          ? modification_radius2
#if 0
          : STRING_EQUAL(surface_modification[hn], "mean radius")
          ? modification_mean_radius
          : STRING_EQUAL(surface_modification[hn], "areal radius")
          ? modification_areal_radius
#endif
          : (CCTK_WARN (0, "internal error"), modification_error);
        AH_data.compute_info.surface_selection = 
          STRING_EQUAL(surface_selection[hn], "definition")
          ? selection_definition
          : STRING_EQUAL(surface_selection[hn], "mean coordinate radius")
          ? selection_mean_coordinate_radius
          : STRING_EQUAL(surface_selection[hn], "areal radius")
          ? selection_areal_radius
          : STRING_EQUAL(surface_selection[hn], "expansion times mean coordinate radius")
          ? selection_expansion_mean_coordinate_radius
          : STRING_EQUAL(surface_selection[hn], "expansion times areal radius")
          ? selection_expansion_areal_radius
          : (CCTK_WARN (0, "internal error"), selection_error);
	AH_data.compute_info.desired_value = desired_value[hn];

        AH_data.move_origins               = move_origins;

        AH_data.use_pretracking            = use_pretracking[hn];
        AH_data.pretracking_max_iterations = pretracking_max_iterations[hn];

        AH_data.pretracking_value          = pretracking_value[hn];
        AH_data.pretracking_minimum_value  = pretracking_minimum_value[hn];
        AH_data.pretracking_maximum_value  = pretracking_maximum_value[hn];
        AH_data.pretracking_delta          = pretracking_delta[hn];
        AH_data.pretracking_minimum_delta  = pretracking_minimum_delta[hn];
        AH_data.pretracking_maximum_delta  = pretracking_maximum_delta[hn];

        AH_data.depends_on           = depends_on[hn];
        AH_data.desired_value_factor = desired_value_factor[hn];
        AH_data.desired_value_offset = desired_value_offset[hn];

        AH_data.shiftout_factor = shiftout_factor[hn];
        AH_data.smoothing_factor = smoothing_factor[hn];

	// AH_data.initial_find_flag = genuine_flag;
	// AH_data.really_initial_find_flag = AH_data.initial_find_flag;
	AH_data.initial_find_flag = true;
	AH_data.really_initial_find_flag = AH_data.initial_find_flag;

	if (genuine_flag)
	   then {
		if (verbose_info.print_algorithm_details)
		   then CCTK_VInfo(CCTK_THORNSTRING,
			   "      setting initial guess parameters etc");
		set_initial_guess_parameters(AH_data, hn, /* irrelevant here; leave at zero */0, 0, 0);
		}

	AH_data.search_flag = false;
	AH_data.found_flag = false;
	AH_data.h_files_written = false;
	AH_data.BH_diagnostics_fileptr = NULL;
	}
	  }

  // Initialise the centroids.  These values may later be overwritten
  // when they are recovered from a checkpoint.  However, if new
  // horizons are enabled during recovery, they are then correctly
  // initialised.
  for (int n = 0; n < N_horizons; ++ n) {
    // Horizon centroids are not valid
    ah_centroid_x[n] = 0.0;
    ah_centroid_y[n] = 0.0;
    ah_centroid_z[n] = 0.0;
    ah_centroid_t[n] = 0.0;
    ah_centroid_valid[n] = 0;
    ah_centroid_iteration[n] = -1;
    
    ah_centroid_x_p[n] = 0.0;
    ah_centroid_y_p[n] = 0.0;
    ah_centroid_z_p[n] = 0.0;
    ah_centroid_t_p[n] = 0.0;
    ah_centroid_valid_p[n] = 0;
    ah_centroid_iteration_p[n] = -1;
    
    struct AH_data& AH_data = *state.AH_data_array[n+1];
    ah_initial_find_flag[n]        = AH_data.initial_find_flag;
    ah_really_initial_find_flag[n] = AH_data.really_initial_find_flag;
    ah_search_flag[n]              = AH_data.search_flag;
    ah_found_flag[n]               = AH_data.found_flag;
    if (verbose_info.print_algorithm_highlights) {
      printf ("AHF setup %d initial_find_flag=%d\n",        n+1, (int) AH_data.initial_find_flag);
      printf ("AHF setup %d really_initial_find_flag=%d\n", n+1, (int) AH_data.really_initial_find_flag);
      printf ("AHF setup %d search_flag=%d\n",              n+1, (int) AH_data.search_flag);
      printf ("AHF setup %d found_flag=%d\n",               n+1, (int) AH_data.found_flag);
    }
  }

  // Save in grid array in case a recovery only recovers some horizons
  for (int n = 0; n < N_horizons; ++ n) {
    struct AH_data& AH_data = *state.AH_data_array[n+1];
    const struct BH_diagnostics& BH_diagnostics = AH_data.BH_diagnostics;
    BH_diagnostics.save(cctkGH, n+1);
  }
}


//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function decodes the  method  parameter (string) into an
// internal enum for future use.
//
namespace {
enum method
  decode_method(const char method_string[])
{
if	(STRING_EQUAL(method_string, "evaluate expansions"))
   then return method__evaluate_expansions;
else if (STRING_EQUAL(method_string, "test expansion Jacobians"))
   then return method__test_expansion_Jacobians;
else if (STRING_EQUAL(method_string, "find horizons"))
   then return method__find_horizons;
else	CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
		   "decode_method(): unknown method_string=\"%s\"!",
		   method_string);				/*NOTREACHED*/
}
	  }

//******************************************************************************

//
// This function decodes the  verbose_level  parameter (string) into an
// internal enum for future use.
//
namespace {
enum verbose_level
  decode_verbose_level(const char verbose_level_string[])
{
if	(STRING_EQUAL(verbose_level_string, "physics highlights"))
   then return verbose_level__physics_highlights;
else if (STRING_EQUAL(verbose_level_string, "physics details"))
   then return verbose_level__physics_details;
else if (STRING_EQUAL(verbose_level_string, "algorithm highlights"))
   then return verbose_level__algorithm_highlights;
else if (STRING_EQUAL(verbose_level_string, "algorithm details"))
   then return verbose_level__algorithm_details;
else if (STRING_EQUAL(verbose_level_string, "algorithm debug"))
   then return verbose_level__algorithm_debug;
else	CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"decode_verbose_level(): unknown verbose_level_string=\"%s\"!",
		   verbose_level_string);			/*NOTREACHED*/
}
	  }

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function allocates horizons to a processor.  That is, it chooses
// which horizons a given processor (in practice, the current processor)
// will attempt to find.  It records this choice in a  horizon_sequence
// object.
//
// Arguments:
// N_procs = The total number of processors.
// my_proc = My processor number (0-origin).
// N_horizons = The total number of (genuine) horizons to be found.
// multiproc_flag = true to spread the horizons over multiple processors,
//		    false to allocate all horizons to processor #0.
// my_hs = (out) This will be set to the sequence of (genuine) horizons
//		 allocated to the specified processor.
// verbose_info = Specifies what information to print about the allocation.
//
// Results:
// This function returns the total number of active processors, i.e. the
// total number of processors which are allocated one or more genuine
// horizons allocated.
//
namespace {
int allocate_horizons_to_processor(int N_procs, int my_proc,
				   int N_horizons, bool multiproc_flag,
                                   const CCTK_INT depends_on[],
				   horizon_sequence& my_hs,
				   const struct verbose_info& verbose_info)
{
const int N_active_procs = multiproc_flag ? jtutil::min(N_procs, N_horizons)
					  : 1;

//
// Implementation note:
// We allocate the horizons to active processors in round-robin order.
//
std::vector<int> proc_of_horizon (N_horizons+1);
	for (int hn = 1 ; hn <= N_horizons ; ++hn)
        {
        proc_of_horizon.at(hn) = -1;
        }

int proc = 0;
	for (int hn = 1 ; hn <= N_horizons ; ++hn)
	{
        if (depends_on[hn] < 0 || depends_on[hn] > N_horizons) {
          CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
                     "horizon %d depends on a horizon with the illegal index %d",
                     hn, int(depends_on[hn]));
        } else if (depends_on[hn] == hn) {
          CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
                     "horizon %d depends on itself",
                     hn);
        } else if (depends_on[hn] > hn) {
          CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
                     "horizon %d depends on a horizon with a larger index %d",
                     hn, int(depends_on[hn]));
        }
        const int this_horizons_proc
          = depends_on[hn] == 0 ? proc : proc_of_horizon.at(depends_on[hn]);
        assert (this_horizons_proc >= 0 && this_horizons_proc < N_procs);
        proc_of_horizon.at(hn) = this_horizons_proc;
	if (verbose_info.print_algorithm_highlights)
	   then CCTK_VInfo(CCTK_THORNSTRING,
			   "   allocating horizon %d to processor #%d",
			   hn, this_horizons_proc);
	if (this_horizons_proc == my_proc)
           then my_hs.append_hn(hn);
	if (++proc >= N_active_procs)
	   then proc = 0;
	}

return N_active_procs;
}
	  }

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function chooses a patch system type based on the Cactus grid
// symmetry and the patch system's origin position.
//
// Arguments:
// grid_* = The values of the Cactus parameters
//		grid::domain
//		grid::bitant_plane
//		grid::quadrant_direction
//		grid::rotation_axis
// origin_[xyz] = The origin position for this patch system.
//
namespace {
enum patch_system::patch_system_type
  choose_patch_system_type(const char grid_domain[],
			   const char grid_bitant_plane[],
			   const char grid_quadrant_direction[],
			   const char grid_rotation_axis[],
			   fp origin_x, fp origin_y, fp origin_z)
{
if	(STRING_EQUAL(grid_domain, "full"))
   then return patch_system::patch_system__full_sphere;

else if ( STRING_EQUAL(grid_domain, "bitant")
	  && STRING_EQUAL(grid_bitant_plane, "xy") )
   then {
	if (origin_z == 0.0)
	   then return patch_system::patch_system__plus_z_hemisphere;
	   else {
		CCTK_VInfo(CCTK_THORNSTRING,
			   "      Cactus has bitant mode about xy plane");
		CCTK_VInfo(CCTK_THORNSTRING,
			   "      but patch system origin_z=%g != 0",
			   double(origin_z));
		CCTK_VInfo(CCTK_THORNSTRING,
			   "      ==> using \"full sphere\" patch system");
		return patch_system::patch_system__full_sphere;
		}
	}

else if ( STRING_EQUAL(grid_domain, "quadrant")
	  && STRING_EQUAL(grid_quadrant_direction, "z") )
   then {
	if ((origin_x == 0.0) && (origin_y == 0.0))
	   then return patch_system::patch_system__plus_xy_quadrant_mirrored;
	   else {
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      Cactus has quadrant mode about z axis");
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      but patch system origin_(x,y)=(%g,%g) != (0,0)",
		   double(origin_x), double(origin_y));
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      ==> using \"full sphere\" patch system");
		return patch_system::patch_system__full_sphere;
		}
	}

else if ( STRING_EQUAL(grid_domain, "quadrant_reflect_rotate")
	  && STRING_EQUAL(grid_quadrant_direction, "z")
	  && STRING_EQUAL(grid_rotation_axis, "z") )
   then {
	if ((origin_x == 0.0) && (origin_y == 0.0))
	   then return patch_system::patch_system__plus_xy_quadrant_rotating;
	   else {
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      Cactus has rotating quadrant mode about z axis");
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      but patch system origin_(x,y)=(%g,%g) != (0,0)",
		   double(origin_x), double(origin_y));
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      ==> using \"full sphere\" patch system");
		return patch_system::patch_system__full_sphere;
		}
	}

else if (STRING_EQUAL(grid_domain, "octant"))
   then {
	if	((origin_x == 0.0) && (origin_y == 0.0) && (origin_z == 0.0))
	   then return patch_system::patch_system__plus_xyz_octant_mirrored;
	else if ((origin_x == 0.0) && (origin_y == 0.0))
	   then {
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      Cactus has mirrored octant mode");
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      but patch system origin_z=%g != 0",
		   double(origin_z));
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      ==> using \"+xy quadrant (mirrored)\" patch system");
		return patch_system::patch_system__plus_xy_quadrant_mirrored;
		}
	else if ((origin_x == 0.0) && (origin_z == 0.0))
	   then {
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      Cactus has mirrored octant mode");
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      but patch system origin_y=%g != 0",
		   double(origin_z));
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      ==> using \"+xz quadrant (mirrored)\" patch system");
		return patch_system::patch_system__plus_xz_quadrant_mirrored;
		}
	else if ((origin_y == 0.0) && (origin_z == 0.0))
	   then {
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      Cactus has mirrored octant mode");
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      but patch system origin_x=%g != 0",
		   double(origin_z));
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      ==> using \"+yz quadrant (mirrored)\" patch system");
		//return patch_system::patch_system__plus_yz_quadrant_mirrored;
                CCTK_WARN (0, "This patch system type is not implemented");
		return patch_system::patch_system__full_sphere;
		}
	else	{
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      Cactus has mirrored octant mode");
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      but patch system origin_(x,y,z)=(%g,%g,%g) != (0,0,0)",
		   double(origin_x), double(origin_y), double(origin_z));
		CCTK_VInfo(CCTK_THORNSTRING,
		   "      ==> using \"full sphere\" patch system");
		return patch_system::patch_system__full_sphere;
		}
	}

else	{
	CCTK_VWarn(1, __LINE__, __FILE__, CCTK_THORNSTRING,
"\n"
"   choose_patch_system_type()\n"
"        grid::domain = \"%s\" not supported!\n"
"        ==> will try using \"full sphere\" patch system\n"
"            but this may or may not work..."
,
		   grid_domain);
	return patch_system::patch_system__full_sphere;
	}
}
	  }

//******************************************************************************

	  }	// namespace AHFinderDirect