aboutsummaryrefslogtreecommitdiff
path: root/src/driver/BH_diagnostics.cc
blob: 123819b6fc9dcc32f455dd724928fec2bc131d65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
// BH_diagnostics.cc -- compute/print BH diagnostics
// $Header$
//
// BH_diagnostics::BH_diagnostics - initialize a  struct BH_diagnostics
//
// BH_diagnostics::copy_to_buffer - copy diagnostics to buffer
// BH_diagnostics::copy_from_buffer - copy buffer to diagnostics
//
// BH_diagnostics::compute - compute BH diagnostics after an AH has been found
// BH_diagnostics::surface_integral - integrate gridfn over the 2-sphere
//
// print - print a line or two summarizing the diagnostics
// setup_output_file - create/open output file, write header describing fields
// output - write a (long) line of all the diagnostics
// store - copy the surface and the diagnostics into the SphericalSurface
//         variables
// save - copy the surface and the diagnostics into the Cactus variables
// load - set the surface and the diagnostics from the Cactus variables
//

#include <stdio.h>
#include <assert.h>
#include <math.h>

#include <vector>

#include "util_Table.h"
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "config.h"
#include "stdc.h"
#include "../jtutil/util.hh"
#include "../jtutil/array.hh"
#include "../jtutil/cpm_map.hh"
#include "../jtutil/linear_map.hh"
using jtutil::error_exit;

#include "../patch/coords.hh"
#include "../patch/grid.hh"
#include "../patch/fd_grid.hh"
#include "../patch/patch.hh"
#include "../patch/patch_edge.hh"
#include "../patch/patch_interp.hh"
#include "../patch/ghost_zone.hh"
#include "../patch/patch_system.hh"

#include "../elliptic/Jacobian.hh"

#include "../gr/gfns.hh"
#include "../gr/gr.hh"

#include "horizon_sequence.hh"
#include "BH_diagnostics.hh"
#include "driver.hh"

// all the code in this file is inside this namespace
namespace AHFinderDirect
	  {

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// ***** access to persistent data *****
//
extern struct state state;

//******************************************************************************

//
// This function initializes a  struct BH_diagnostics  to all zeros.
//
BH_diagnostics::BH_diagnostics()
	: origin_x(0.0), origin_y(0.0), origin_z(0.0),
	  centroid_x(0.0), centroid_y(0.0), centroid_z(0.0),
          quadrupole_xx(0.0), quadrupole_xy(0.0), quadrupole_xz(0.0),
          quadrupole_yy(0.0), quadrupole_yz(0.0), quadrupole_zz(0.0),
	  min_radius(0.0), max_radius(0.0), mean_radius(0.0),
	  min_x(0.0), max_x(0.0),
	  min_y(0.0), max_y(0.0),
	  min_z(0.0), max_z(0.0),
	  circumference_xy(0.0), circumference_xz(0.0), circumference_yz(0.0),
	  area(1.0),
          expansion(0.0),
          inner_expansion(0.0),
          product_expansion(0.0),
          mean_curvature(0.0),
          area_gradient(0.0),
          expansion_gradient(0.0),
          inner_expansion_gradient(0.0),
          product_expansion_gradient(0.0),
          mean_curvature_gradient(0.0),
          mean_curvature_minimum(0.0),
          mean_curvature_maximum(0.0),
          mean_curvature_integral(0.0)
{ }

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function copies the diagnostics to a user-supplied buffer.
//
void BH_diagnostics::copy_to_buffer(CCTK_REAL buffer[N_buffer])
	const
{
buffer[posn__origin_x] = this->origin_x;
buffer[posn__origin_y] = this->origin_y;
buffer[posn__origin_z] = this->origin_z;

buffer[posn__centroid_x] = centroid_x;
buffer[posn__centroid_y] = centroid_y;
buffer[posn__centroid_z] = centroid_z;

buffer[posn__quadrupole_xx] = quadrupole_xx;
buffer[posn__quadrupole_xy] = quadrupole_xy;
buffer[posn__quadrupole_xz] = quadrupole_xz;
buffer[posn__quadrupole_yy] = quadrupole_yy;
buffer[posn__quadrupole_xz] = quadrupole_yz;
buffer[posn__quadrupole_zz] = quadrupole_zz;

buffer[posn__min_radius]  = min_radius;
buffer[posn__max_radius]  = max_radius;
buffer[posn__mean_radius] = mean_radius;

buffer[posn__min_x] = min_x;
buffer[posn__max_x] = max_x;
buffer[posn__min_y] = min_y;
buffer[posn__max_y] = max_y;
buffer[posn__min_z] = min_z;
buffer[posn__max_z] = max_z;

buffer[posn__circumference_xy]  = circumference_xy;
buffer[posn__circumference_xz]  = circumference_xz;
buffer[posn__circumference_yz]  = circumference_yz;
buffer[posn__area]              = area;
buffer[posn__expansion]         = expansion;
buffer[posn__inner_expansion]   = inner_expansion;
buffer[posn__product_expansion] = product_expansion;
buffer[posn__mean_curvature]    = mean_curvature;

buffer[posn__area_gradient]              = area_gradient;
buffer[posn__expansion_gradient]         = expansion_gradient;
buffer[posn__inner_expansion_gradient]   = inner_expansion_gradient;
buffer[posn__product_expansion_gradient] = product_expansion_gradient;
buffer[posn__mean_curvature_gradient]    = mean_curvature_gradient;

buffer[posn__mean_curvature_minimum]    = mean_curvature_minimum;
buffer[posn__mean_curvature_maximum]    = mean_curvature_maximum;
buffer[posn__mean_curvature_integral]   = mean_curvature_integral;
}

//******************************************************************************

//
// This function copies a user-supplied buffer to the diagnostics.
//
void BH_diagnostics::copy_from_buffer(const CCTK_REAL buffer[N_buffer])
{
this->origin_x = buffer[posn__origin_x];
this->origin_y = buffer[posn__origin_y];
this->origin_z = buffer[posn__origin_z];

centroid_x = buffer[posn__centroid_x];
centroid_y = buffer[posn__centroid_y];
centroid_z = buffer[posn__centroid_z];

quadrupole_xx = buffer[posn__quadrupole_xx];
quadrupole_xy = buffer[posn__quadrupole_xy];
quadrupole_xz = buffer[posn__quadrupole_xz];
quadrupole_yy = buffer[posn__quadrupole_yy];
quadrupole_yz = buffer[posn__quadrupole_yz];
quadrupole_zz = buffer[posn__quadrupole_zz];

 min_radius = buffer[posn__min_radius];
 max_radius = buffer[posn__max_radius];
mean_radius = buffer[posn__mean_radius];

min_x = buffer[posn__min_x];
max_x = buffer[posn__max_x];
min_y = buffer[posn__min_y];
max_y = buffer[posn__max_y];
min_z = buffer[posn__min_z];
max_z = buffer[posn__max_z];

 circumference_xy = buffer[posn__circumference_xy];
 circumference_xz = buffer[posn__circumference_xz];
 circumference_yz = buffer[posn__circumference_yz];
             area = buffer[posn__area];
        expansion = buffer[posn__expansion];
  inner_expansion = buffer[posn__inner_expansion];
product_expansion = buffer[posn__product_expansion];
   mean_curvature = buffer[posn__mean_curvature];

             area_gradient = buffer[posn__area_gradient];
        expansion_gradient = buffer[posn__expansion_gradient];
  inner_expansion_gradient = buffer[posn__inner_expansion_gradient];
product_expansion_gradient = buffer[posn__product_expansion_gradient];
   mean_curvature_gradient = buffer[posn__mean_curvature_gradient];

   mean_curvature_minimum  = buffer[posn__mean_curvature_minimum];
   mean_curvature_maximum  = buffer[posn__mean_curvature_maximum];
   mean_curvature_integral = buffer[posn__mean_curvature_integral];
}

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// Given that an apparent horizon has been found, this function computes
// various black hole diagnostics.
//
// Inputs (gridfns)
// h		# ghosted
// one		# nominal
// global_[xyz]	# nominal
//
// Bugs:
// The computation is rather inefficient -- we make many passes over the
// angular grid, instead of doing everything in one pass.
//
void BH_diagnostics::compute
	(const patch_system& ps,
         const fp the_area,
         const fp mean_expansion,
         const fp mean_inner_expansion,
         const fp mean_product_expansion,
         const fp mean_mean_curvature,
         const fp the_area_gradient,
         const fp mean_expansion_gradient,
         const fp mean_inner_expansion_gradient,
         const fp mean_product_expansion_gradient,
         const fp mean_mean_curvature_gradient,
	 const struct BH_diagnostics_info& BH_diagnostics_info)
{
//
// min/max radius of horizon
//
jtutil::norm<fp> h_norms;
ps.ghosted_gridfn_norms(gfns::gfn__h, h_norms);
min_radius = h_norms.min_abs_value();
max_radius = h_norms.max_abs_value();


//
// xyz bounding box of horizon
//

// compute bounding box of nominal grid
// ... this is only the stored part of the horizon if there are symmetries
jtutil::norm<fp> x_norms;
ps.gridfn_norms(gfns::gfn__global_x, x_norms);
min_x = x_norms.min_value();
max_x = x_norms.max_value();

jtutil::norm<fp> y_norms;
ps.gridfn_norms(gfns::gfn__global_y, y_norms);
min_y = y_norms.min_value();
max_y = y_norms.max_value();

jtutil::norm<fp> z_norms;
ps.gridfn_norms(gfns::gfn__global_z, z_norms);
min_z = z_norms.min_value();
max_z = z_norms.max_value();

// adjust the bounding box for the symmetries
#define REFLECT(origin_, max_)	(origin_ - (max_ - origin_))
switch	(ps.type())
	{
case patch_system::patch_system__full_sphere:
	break;
case patch_system::patch_system__plus_z_hemisphere:
	min_z = REFLECT(ps.origin_z(), max_z);
	break;
case patch_system::patch_system__plus_xy_quadrant_mirrored:
case patch_system::patch_system__plus_xy_quadrant_rotating:
	min_x = REFLECT(ps.origin_x(), max_x);
	min_y = REFLECT(ps.origin_y(), max_y);
	break;
case patch_system::patch_system__plus_xz_quadrant_mirrored:
case patch_system::patch_system__plus_xz_quadrant_rotating:
	min_x = REFLECT(ps.origin_x(), max_x);
	min_z = REFLECT(ps.origin_z(), max_z);
	break;
case patch_system::patch_system__plus_xyz_octant_mirrored:
case patch_system::patch_system__plus_xyz_octant_rotating:
	min_x = REFLECT(ps.origin_x(), max_x);
	min_y = REFLECT(ps.origin_y(), max_y);
	min_z = REFLECT(ps.origin_z(), max_z);
	break;
default:
	error_exit(PANIC_EXIT,
"***** BH_diagnostics::compute(): unknown patch system type()=(int)%d!\n"
"                                 (this should never happen!)\n",
		   int(ps.type()));				/*NOTREACHED*/
	}


//
// surface integrals
//
const fp integral_one = surface_integral(ps,
					 gfns::gfn__one, true, true, true,
					 BH_diagnostics_info.integral_method);
const fp integral_h = surface_integral(ps,
				       gfns::gfn__h, true, true, true,
				       BH_diagnostics_info.integral_method);
const fp integral_x = surface_integral(ps,
				       gfns::gfn__global_x, true, true, false,
				       BH_diagnostics_info.integral_method);
const fp integral_y = surface_integral(ps,
				       gfns::gfn__global_y, true, false, true,
				       BH_diagnostics_info.integral_method);
const fp integral_z = surface_integral(ps,
				       gfns::gfn__global_z, false, true, true,
				       BH_diagnostics_info.integral_method);
const fp integral_xx = surface_integral(ps,
                                        gfns::gfn__global_xx, true, true, true,
                                        BH_diagnostics_info.integral_method);
const fp integral_xy = surface_integral(ps,
                                        gfns::gfn__global_xy, true, false, false,
                                        BH_diagnostics_info.integral_method);
const fp integral_xz = surface_integral(ps,
                                        gfns::gfn__global_xz, false, true, false,
                                        BH_diagnostics_info.integral_method);
const fp integral_yy = surface_integral(ps,
                                        gfns::gfn__global_yy, true, true, true,
                                        BH_diagnostics_info.integral_method);
const fp integral_yz = surface_integral(ps,
                                        gfns::gfn__global_yz, false, false, true,
                                        BH_diagnostics_info.integral_method);
const fp integral_zz = surface_integral(ps,
                                        gfns::gfn__global_zz, true, true, true,
                                        BH_diagnostics_info.integral_method);


//
// originds
//
this->origin_x = ps.origin_x();
this->origin_y = ps.origin_y();
this->origin_z = ps.origin_z();


//
// centroids
//
centroid_x = integral_x / integral_one;
centroid_y = integral_y / integral_one;
centroid_z = integral_z / integral_one;


//
// quadrupoles
//
quadrupole_xx = integral_xx / integral_one;
quadrupole_xy = integral_xy / integral_one;
quadrupole_xz = integral_xz / integral_one;
quadrupole_yy = integral_yy / integral_one;
quadrupole_yz = integral_yz / integral_one;
quadrupole_zz = integral_zz / integral_one;


//
// area, mean radius, and mass
//
mean_radius = integral_h / integral_one;


//
// expansion
//
area              = the_area;
expansion         = mean_expansion;
inner_expansion   = mean_inner_expansion;
product_expansion = mean_product_expansion;
mean_curvature    = mean_mean_curvature;

area_gradient              = the_area_gradient;
expansion_gradient         = mean_expansion_gradient;
inner_expansion_gradient   = mean_inner_expansion_gradient;
product_expansion_gradient = mean_product_expansion_gradient;
mean_curvature_gradient    = mean_mean_curvature_gradient;

//
// minimum, maximum and the integral of the mean curvature
//
jtutil::norm<fp> mean_curvature_norms;
ps.gridfn_norms(gfns::gfn__mean_curvature, mean_curvature_norms);
mean_curvature_minimum = mean_curvature_norms.min_value();
mean_curvature_maximum = mean_curvature_norms.max_value();
mean_curvature_integral = surface_integral(ps,
                                           gfns::gfn__mean_curvature,
                                           true, true, true,
                                           BH_diagnostics_info.integral_method);


//
// circumferences
//
circumference_xy
  = ps.circumference("xy", gfns::gfn__h,
		     gfns::gfn__g_dd_11, gfns::gfn__g_dd_12, gfns::gfn__g_dd_13,
					 gfns::gfn__g_dd_22, gfns::gfn__g_dd_23,
							     gfns::gfn__g_dd_33,
		     BH_diagnostics_info.integral_method);
circumference_xz
  = ps.circumference("xz", gfns::gfn__h,
		     gfns::gfn__g_dd_11, gfns::gfn__g_dd_12, gfns::gfn__g_dd_13,
					 gfns::gfn__g_dd_22, gfns::gfn__g_dd_23,
							     gfns::gfn__g_dd_33,
		     BH_diagnostics_info.integral_method);
circumference_yz
  = ps.circumference("yz", gfns::gfn__h,
		     gfns::gfn__g_dd_11, gfns::gfn__g_dd_12, gfns::gfn__g_dd_13,
					 gfns::gfn__g_dd_22, gfns::gfn__g_dd_23,
							     gfns::gfn__g_dd_33,
		     BH_diagnostics_info.integral_method);
}

//******************************************************************************

//
// This function computes the surface integral of a gridfn over the
// horizon.
//
//static
  fp BH_diagnostics::surface_integral
	(const patch_system& ps,
	 int src_gfn, bool src_gfn_is_even_across_xy_plane,
		      bool src_gfn_is_even_across_xz_plane,
		      bool src_gfn_is_even_across_yz_plane,
	 enum patch::integration_method method)
{
return ps.integrate_gridfn
	   (src_gfn, src_gfn_is_even_across_xy_plane,
		     src_gfn_is_even_across_xz_plane,
		     src_gfn_is_even_across_yz_plane,
	    gfns::gfn__h,
	    gfns::gfn__g_dd_11, gfns::gfn__g_dd_12, gfns::gfn__g_dd_13,
				gfns::gfn__g_dd_22, gfns::gfn__g_dd_23,
						    gfns::gfn__g_dd_33,
	    method);
}

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function prints a line or two summarizing the diagnostics,
// using CCTK_VInfo().
//
void BH_diagnostics::print(int N_horizons, int hn)
	const
{
const fp m_irreducible = sqrt(area / (16*PI));
CCTK_VInfo(CCTK_THORNSTRING,
	   "AH %d/%d: r=%g at (%f,%f,%f)",
	   hn, N_horizons,
	   double(mean_radius),
	   double(centroid_x), double(centroid_y), double(centroid_z));
CCTK_VInfo(CCTK_THORNSTRING,
	   "AH %d/%d: area=%.10g m_irreducible=%.10g",
	   hn, N_horizons,
	   double(area), double(m_irreducible));
}

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function creates a BH-diagnostics output file, writes a suitable
// header comment identifying the fields to be written by  output() ,
// flushes the stream (to help in examining the output while Cactus is
// still running), and finally returns a stdio file pointer which can be
// used by  output()  to output data to the file.
//
FILE* BH_diagnostics::setup_output_file(const struct IO_info& IO_info,
					int N_horizons, int hn)
	const
{
char file_name_buffer[IO_info::file_name_buffer_size];

const char* directory = IO_info.BH_diagnostics_directory;
const int status = CCTK_CreateDirectory(IO_info.default_directory_permission,
					directory);
if (status < 0)
   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"\n"
"   BH_diagnostics::setup_output_file():\n"
"        error %d trying to create output directory\n"
"        \"%s\"!"
		   ,
		   status,
		   directory);					/*NOTREACHED*/

snprintf(file_name_buffer, IO_info::file_name_buffer_size,
	 "%s/%s.ah%d.%s",
	 directory, IO_info.BH_diagnostics_base_file_name,
	 hn, IO_info.BH_diagnostics_file_name_extension);

const char *openMode;
if (IO_TruncateOutputFiles(state.cgi.GH) == 1)
   openMode = "w";
else
   openMode = "a";

FILE *fileptr = fopen(file_name_buffer, openMode);
if (fileptr == NULL)
   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"\n"
"   BH_diagnostics::setup_output_file():\n"
"        can't open BH-diagnostics output file\n"
"        \"%s\"!"
		   ,
		   file_name_buffer);				/*NOTREACHED*/

fprintf(fileptr, "# apparent horizon %d/%d\n", hn, N_horizons);
fprintf(fileptr, "#\n");
fprintf(fileptr, "# column  1 = cctk_iteration\n");
fprintf(fileptr, "# column  2 = cctk_time\n");
fprintf(fileptr, "# column  3 = centroid_x\n");
fprintf(fileptr, "# column  4 = centroid_y\n");
fprintf(fileptr, "# column  5 = centroid_z\n");
fprintf(fileptr, "# column  6 = min radius\n");
fprintf(fileptr, "# column  7 = max radius\n");
fprintf(fileptr, "# column  8 = mean radius\n");
fprintf(fileptr, "# column  9 = quadrupole_xx\n");
fprintf(fileptr, "# column 10 = quadrupole_xy\n");
fprintf(fileptr, "# column 11 = quadrupole_xz\n");
fprintf(fileptr, "# column 12 = quadrupole_yy\n");
fprintf(fileptr, "# column 13 = quadrupole_yz\n");
fprintf(fileptr, "# column 14 = quadrupole_zz\n");
fprintf(fileptr, "# column 15 = min x\n");
fprintf(fileptr, "# column 16 = max x\n");
fprintf(fileptr, "# column 17 = min y\n");
fprintf(fileptr, "# column 18 = max y\n");
fprintf(fileptr, "# column 19 = min z\n");
fprintf(fileptr, "# column 20 = max z\n");
fprintf(fileptr, "# column 21 = xy-plane circumference\n");
fprintf(fileptr, "# column 22 = xz-plane circumference\n");
fprintf(fileptr, "# column 23 = yz-plane circumference\n");
fprintf(fileptr, "# column 24 = ratio of xz/xy-plane circumferences\n");
fprintf(fileptr, "# column 25 = ratio of yz/xy-plane circumferences\n");
fprintf(fileptr, "# column 26 = area\n");
fprintf(fileptr, "# column 27 = m_irreducible\n");
fprintf(fileptr, "# column 28 = areal radius\n");
fprintf(fileptr, "# column 29 = expansion Theta_(l)\n");
fprintf(fileptr, "# column 30 = inner expansion Theta_(n)\n");
fprintf(fileptr, "# column 31 = product of the expansions\n");
fprintf(fileptr, "# column 32 = mean curvature\n");
fprintf(fileptr, "# column 33 = gradient of the areal radius\n");
fprintf(fileptr, "# column 34 = gradient of the expansion Theta_(l)\n");
fprintf(fileptr, "# column 35 = gradient of the inner expansion Theta_(n)\n");
fprintf(fileptr, "# column 36 = gradient of the product of the expansions\n");
fprintf(fileptr, "# column 37 = gradient of the mean curvature\n");
fprintf(fileptr, "# column 38 = minimum  of the mean curvature\n");
fprintf(fileptr, "# column 39 = maximum  of the mean curvature\n");
fprintf(fileptr, "# column 40 = integral of the mean curvature\n");
fflush(fileptr);

return fileptr;
}

//******************************************************************************

//
// This function outputs a BH-diagnostics line to a stdio stream, then
// flushes the stream (to help in examining the output while Cactus is
// still running).
//
// Arguments:
// BH_diagnostics = The BH diagnostics to be written
// fileptr = The stdio file pointer to append to
//
void BH_diagnostics::output(FILE*fileptr, const struct IO_info& IO_info)
	const
{
assert(fileptr != NULL);

fprintf(fileptr,
     //  cctk_iteration        min radius      mean radius
     //  ==  cctk_time         ======  max radius
     //  ==  ====  centroid_[xyz]      ======  ======
     //  ==  ====  ==========  ======  ======  ======
	"%d\t%.3f\t%f\t%f\t%f\t%#.10g\t%#.10g\t%#.10g\t",
	IO_info.time_iteration, double(IO_info.time),
	double(centroid_x), double(centroid_y), double(centroid_z),
	double(min_radius), double(max_radius), double(mean_radius));

fprintf(fileptr,
     //  quadrupole_{xx,xy,xz,yy,yz,zz}
     //  ================================================
	"%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t",
	double(quadrupole_xx - centroid_x*centroid_x),
        double(quadrupole_xy - centroid_x*centroid_y),
	double(quadrupole_xz - centroid_x*centroid_z),
        double(quadrupole_yy - centroid_y*centroid_y),
	double(quadrupole_yz - centroid_y*centroid_z),
        double(quadrupole_zz - centroid_z*centroid_z));

fprintf(fileptr,
     //  {min,max}_x     {min,max}_y     {min,max}_z
     //  ==============  ==============  ==============
	"%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t",
	double(min_x), double(max_x),
	double(min_y), double(max_y),
	double(min_z), double(max_z));

fprintf(fileptr,
     //  {xy,xz,yz}-plane         xz/xy  yz/xy
     //  circumferences          circumference
     //                          ratios
     //  ======================  ==============
	"%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t",
	double(circumference_xy),
	double(circumference_xz),
	double(circumference_yz),
	double(circumference_xz / circumference_xy),
	double(circumference_yz / circumference_xy));

const fp m_irreducible = sqrt(area / (16*PI));;
const fp areal_radius = sqrt(area / (4*PI));
const fp areal_radius_gradient = sqrt(1 / (16*PI*area)) * area_gradient;
fprintf(fileptr,
     //  area    m_irre- areal   expan-  inner   prod.   mean    areal   expan-  inner   prod.   mean    mean    mean    mean
     //          ducible radius  sion    expan-  of the  curva-  radius  sion    expan-  of the  curva-	 curva-  curva-  curva-
     //                                  sion    expan-  ture    grad.   grad.   sion    exp.s   ture    ture    ture    ture
     //                                          sions                           grad.   grad.   grad.   min.    max.    integ.
     //  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======
     //                                                                                                
     //  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======  ======
	"%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\t%#.10g\n",
	double(area), double(m_irreducible), double(areal_radius),
        double(expansion), double(inner_expansion), double(product_expansion), double(mean_curvature),
        double(areal_radius_gradient),
        double(expansion_gradient), double(inner_expansion_gradient), double(product_expansion_gradient), double(mean_curvature_gradient),
	double(mean_curvature_minimum), double(mean_curvature_maximum), double(mean_curvature_integral));

fflush(fileptr);
}

//******************************************************************************

//
// This function copies the BH-diagnostics into the SphericalSurface variables.
//
// Arguments:
// CCTK_ARGUMENTS
//
void BH_diagnostics::store(CCTK_ARGUMENTS,
                           const int horizon_number, const int surface_number)
	const
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  assert (surface_number >= 0 && surface_number < nsurfaces);
  
  assert(state.AH_data_array[horizon_number] != NULL);
  const struct AH_data& AH_data = *state.AH_data_array[horizon_number];
  
  // tell the world if we don't look for this horizon any more
  const int my_dont_find_after = dont_find_after_individual[horizon_number];
  const fp my_find_after_time = find_after_individual_time[horizon_number];
  const fp my_dont_find_after_time = dont_find_after_individual_time[horizon_number];
  if ((my_dont_find_after >= 0 and cctk_iteration > my_dont_find_after) or
      (my_dont_find_after_time > my_find_after_time and cctk_time > my_dont_find_after_time))
  {
    assert (! AH_data.search_flag);
    sf_active[surface_number] = 0;
  }
  
  // only try to copy AH info if we've found AHs at this time level
  if (! AH_data.search_flag) {
    sf_valid[surface_number] = 0;
    return;
  }
  
  // did we actually *find* this horizon?
  if (! AH_data.found_flag) {
    sf_valid[surface_number] = -1;
    return;
  }
  
  sf_active       [surface_number] = 1;
  sf_valid        [surface_number] = 1;
  sf_origin_x     [surface_number] = this->origin_x;
  sf_origin_y     [surface_number] = this->origin_y;
  sf_origin_z     [surface_number] = this->origin_z;
  sf_mean_radius  [surface_number] = mean_radius;
  sf_min_radius   [surface_number] = min_radius;
  sf_max_radius   [surface_number] = max_radius;
  sf_centroid_x   [surface_number] = centroid_x;
  sf_centroid_y   [surface_number] = centroid_y;
  sf_centroid_z   [surface_number] = centroid_z;
  sf_quadrupole_xx[surface_number] = quadrupole_xx - centroid_x*centroid_x;
  sf_quadrupole_xy[surface_number] = quadrupole_xy - centroid_x*centroid_y;
  sf_quadrupole_xz[surface_number] = quadrupole_xz - centroid_x*centroid_z;
  sf_quadrupole_yy[surface_number] = quadrupole_yy - centroid_y*centroid_y;
  sf_quadrupole_yz[surface_number] = quadrupole_yz - centroid_y*centroid_z;
  sf_quadrupole_zz[surface_number] = quadrupole_zz - centroid_z*centroid_z;
  sf_min_x        [surface_number] = min_x;
  sf_max_x        [surface_number] = max_x;
  sf_min_y        [surface_number] = min_y;
  sf_max_y        [surface_number] = max_y;
  sf_min_z        [surface_number] = min_z;
  sf_max_z        [surface_number] = max_z;
  sf_area         [surface_number] = area;
  
  std::vector<CCTK_REAL> xx, yy, zz, rr;
  xx.resize (sf_ntheta[surface_number] * sf_nphi[surface_number]);
  yy.resize (sf_ntheta[surface_number] * sf_nphi[surface_number]);
  zz.resize (sf_ntheta[surface_number] * sf_nphi[surface_number]);
  rr.resize (sf_ntheta[surface_number] * sf_nphi[surface_number]);
  size_t n;
  n = 0;
  for (int j=0; j<sf_nphi[surface_number]; ++j) {
    for (int i=0; i<sf_ntheta[surface_number]; ++i) {
      const CCTK_REAL theta
        = sf_origin_theta[surface_number] + i * sf_delta_theta[surface_number];
      const CCTK_REAL phi
        = sf_origin_phi[surface_number] + j * sf_delta_phi[surface_number];
      xx[n] = sf_origin_x[surface_number] + sin(theta) * cos(phi);
      yy[n] = sf_origin_y[surface_number] + sin(theta) * sin(phi);
      zz[n] = sf_origin_z[surface_number] + cos(theta);
      ++n;
    }
  }
  AHFinderDirect_radius_in_direction
    (horizon_number, sf_ntheta[surface_number] * sf_nphi[surface_number],
     &xx[0], &yy[0], &zz[0], &rr[0]);
  n = 0;
  for (int j=0; j<sf_nphi[surface_number]; ++j) {
    for (int i=0; i<sf_ntheta[surface_number]; ++i) {
      sf_radius[i + maxntheta * (j + maxnphi * surface_number)] = rr[n];
      ++n;
    }
  }
}

//******************************************************************************

//
// This function copies the BH-diagnostics into the Cactus variables.
//
// Arguments:
// CCTK_ARGUMENTS
//
void BH_diagnostics::save(CCTK_ARGUMENTS,
                          const int horizon_number)
	const
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  assert(state.AH_data_array[horizon_number] != NULL);
  const struct verbose_info& verbose_info = state.verbose_info;
  const struct AH_data& AH_data = *state.AH_data_array[horizon_number];
  patch_system& ps = *AH_data.ps_ptr;
  
  if (AH_data.search_flag &&
      AH_data.found_flag &&
      cctk_iteration > ah_centroid_iteration[horizon_number-1])
  {
    ah_centroid_x_p[horizon_number-1] = ah_centroid_x[horizon_number-1];
    ah_centroid_y_p[horizon_number-1] = ah_centroid_y[horizon_number-1];
    ah_centroid_z_p[horizon_number-1] = ah_centroid_z[horizon_number-1];
    ah_centroid_t_p[horizon_number-1] = ah_centroid_t[horizon_number-1];
    ah_centroid_valid_p[horizon_number-1] = ah_centroid_valid[horizon_number-1];
    ah_centroid_iteration_p[horizon_number-1] =
      ah_centroid_iteration[horizon_number-1];
  
    ah_centroid_x[horizon_number-1] = centroid_x;
    ah_centroid_y[horizon_number-1] = centroid_y;
    ah_centroid_z[horizon_number-1] = centroid_z;
    ah_centroid_t[horizon_number-1] = cctk_time;
    ah_centroid_valid[horizon_number-1] = AH_data.found_flag;
    ah_centroid_iteration[horizon_number-1] = cctk_iteration;
  }
  
  ah_origin_x[horizon_number-1] = ps.origin_x();
  ah_origin_y[horizon_number-1] = ps.origin_y();
  ah_origin_z[horizon_number-1] = ps.origin_z();
  
  for (int pn = 0; pn < ps.N_patches(); ++pn) {
    assert (pn < 6);
    patch& p = ps.ith_patch(pn);
    for (int i = 0, irho = p.min_irho(); irho <= p.max_irho(); ++i, ++irho) {
      assert (i <= max_N_zones_per_right_angle);
      for (int j = 0, isigma = p.min_isigma(); isigma <= p.max_isigma(); ++j, ++isigma) {
        assert (j <= max_N_zones_per_right_angle);
        ah_radius[i + (max_N_zones_per_right_angle+1) * (j + (max_N_zones_per_right_angle+1) * (pn + 6 * (horizon_number-1)))]
          = p.ghosted_gridfn(gfns::gfn__h, irho,isigma);
      }
    }
  }
  
  ah_initial_find_flag       [horizon_number-1] = AH_data.initial_find_flag;
  ah_really_initial_find_flag[horizon_number-1] = AH_data.really_initial_find_flag;
  ah_search_flag             [horizon_number-1] = AH_data.search_flag;
  ah_found_flag              [horizon_number-1] = AH_data.found_flag;
  if (verbose_info.print_algorithm_highlights) {
    printf ("AHF BH_diagnostics::save[%d] initial_find_flag=%d\n",        horizon_number, (int) AH_data.initial_find_flag);
    printf ("AHF BH_diagnostics::save[%d] really_initial_find_flag=%d\n", horizon_number, (int) AH_data.really_initial_find_flag);
    printf ("AHF BH_diagnostics::save[%d] search_flag=%d\n",              horizon_number, (int) AH_data.search_flag);
    printf ("AHF BH_diagnostics::save[%d] found_flag=%d\n",               horizon_number, (int) AH_data.found_flag);
  }
}

//******************************************************************************

//
// This function copies the BH-diagnostics from the Cactus variables.
//
// Arguments:
// CCTK_ARGUMENTS
//
void BH_diagnostics::load(CCTK_ARGUMENTS,
                          const int horizon_number)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  assert(state.AH_data_array[horizon_number] != NULL);
  const struct verbose_info& verbose_info = state.verbose_info;
  struct AH_data& AH_data = *state.AH_data_array[horizon_number];
  patch_system& ps = *AH_data.ps_ptr;
  
  // only use stored origins if horizon had not yet been found!
  if (ah_found_flag[horizon_number-1]) {
    ps.origin_x(ah_origin_x[horizon_number-1]);
    ps.origin_y(ah_origin_y[horizon_number-1]);
    ps.origin_z(ah_origin_z[horizon_number-1]);
  }
  
  for (int pn = 0; pn < ps.N_patches(); ++pn) {
    assert (pn < 6);
    patch& p = ps.ith_patch(pn);
    for (int i = 0, irho = p.min_irho(); irho <= p.max_irho(); ++i, ++irho) {
      assert (i <= max_N_zones_per_right_angle);
      for (int j = 0, isigma = p.min_isigma(); isigma <= p.max_isigma(); ++j, ++isigma) {
        assert (j <= max_N_zones_per_right_angle);
        p.ghosted_gridfn(gfns::gfn__h, irho,isigma) =
          ah_radius[i + (max_N_zones_per_right_angle+1) * (j + (max_N_zones_per_right_angle+1) * (pn + 6 * (horizon_number-1)))];
      }
    }
  }
  
  // recover the full ghosted-grid horizon shape
  // (we only save and load the nominal-grid shape)
  ps.synchronize();
  
  AH_data.initial_find_flag        = ah_initial_find_flag       [horizon_number-1];
  AH_data.really_initial_find_flag = ah_really_initial_find_flag[horizon_number-1];
  AH_data.search_flag              = ah_search_flag             [horizon_number-1];
  AH_data.found_flag               = ah_found_flag              [horizon_number-1];
  if (verbose_info.print_algorithm_highlights) {
    printf ("AHF BH_diagnostics::load[%d] initial_find_flag=%d\n",        horizon_number, (int) AH_data.initial_find_flag);
    printf ("AHF BH_diagnostics::load[%d] really_initial_find_flag=%d\n", horizon_number, (int) AH_data.really_initial_find_flag);
    printf ("AHF BH_diagnostics::load[%d] search_flag=%d\n",              horizon_number, (int) AH_data.search_flag);
    printf ("AHF BH_diagnostics::load[%d] found_flag=%d\n",               horizon_number, (int) AH_data.found_flag);
  }
}

//******************************************************************************
//******************************************************************************
//******************************************************************************

	  }	// namespace AHFinderDirect