aboutsummaryrefslogtreecommitdiff
path: root/src/volume_integral.c
blob: 0a9a1dd6d76d945c2b7eea5913a58cd3a46d4c75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include <stdio.h>
#include <stdlib.h>

#include <cctk.h>
#include <cctk_Arguments.h>
#include <cctk_Parameters.h>

#include "SpaceMask.h"

void ADMMass_Volume(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS
    DECLARE_CCTK_PARAMETERS

    CCTK_INT i,j,k, ijk;
    CCTK_REAL detg, idetg;
    CCTK_REAL u[3][3], dg[3][3][3];
    CCTK_REAL local_sum = 0.0;
    CCTK_REAL radius;

    CCTK_INT mask_descriptor, state_descriptor_outside;

    mask_descriptor = SpaceMask_GetTypeBits("OutsideMask");
    state_descriptor_outside = SpaceMask_GetStateBits("OutsideMask", "outside");

    /* grid-function strides for ADMMacros */
    const CCTK_INT di = 1;
    const CCTK_INT dj = cctk_lsh[0];
    const CCTK_INT dk = cctk_lsh[0]*cctk_lsh[1];

    if (ADMMass_use_boundary_distance_as_volume_radius &&
        (ADMMass_volume_radius[*ADMMass_LoopCounter] < 0.0))
        radius = ADMMass_boundary_distance[*ADMMass_LoopCounter];
    else
        radius = ADMMass_volume_radius[*ADMMass_LoopCounter];

    if (radius <= 0.0)
    {
        CCTK_WARN(1, "radius < 0 / not set, not calculating "
                     "the volume integral to get the ADM mass.");
        return;
    }

#include "CactusEinstein/ADMMacros/src/macro/UPPERMET_declare.h"
#include "CactusEinstein/ADMMacros/src/macro/DG_declare.h"
#include "CactusEinstein/ADMMacros/src/macro/ADM_Spacing_declare.h"

    for(i=3; i<cctk_lsh[0]-3; i++)
     for(j=3; j<cctk_lsh[1]-3; j++)
      for(k=3; k<cctk_lsh[2]-3; k++)
      {
          ijk = CCTK_GFINDEX3D(cctkGH, i, j, k);
          ADMMass_VolumeMass_GF[ijk] = 0.0;
          ADMMass_VolumeMass_pot_x[ijk] = 0.0;
          ADMMass_VolumeMass_pot_y[ijk] = 0.0;
          ADMMass_VolumeMass_pot_z[ijk] = 0.0;
#include "CactusEinstein/ADMMacros/src/macro/ADM_Spacing.h"
#include "CactusEinstein/ADMMacros/src/macro/UPPERMET_guts.h"
#include "CactusEinstein/ADMMacros/src/macro/DG_guts.h"
          u[0][0] = UPPERMET_UXX;
          u[0][1] = UPPERMET_UXY;
          u[0][2] = UPPERMET_UXZ;
          u[1][0] = UPPERMET_UXY;
          u[1][1] = UPPERMET_UYY;
          u[1][2] = UPPERMET_UYZ;
          u[2][0] = UPPERMET_UXZ;
          u[2][1] = UPPERMET_UYZ;
          u[2][2] = UPPERMET_UZZ;
          dg[0][0][0] = DXDG_DXDGXX;
          dg[0][0][1] = DYDG_DYDGXX;
          dg[0][0][2] = DZDG_DZDGXX;
          dg[0][1][0] = DXDG_DXDGXY;
          dg[0][1][1] = DYDG_DYDGXY;
          dg[0][1][2] = DZDG_DZDGXY;
          dg[0][2][0] = DXDG_DXDGXZ;
          dg[0][2][1] = DYDG_DYDGXZ;
          dg[0][2][2] = DZDG_DZDGXZ;
          dg[1][0][0] = DXDG_DXDGXY;
          dg[1][0][1] = DYDG_DYDGXY;
          dg[1][0][2] = DZDG_DZDGXY;
          dg[1][1][0] = DXDG_DXDGYY;
          dg[1][1][1] = DYDG_DYDGYY;
          dg[1][1][2] = DZDG_DZDGYY;
          dg[1][2][0] = DXDG_DXDGYZ;
          dg[1][2][1] = DYDG_DYDGYZ;
          dg[1][2][2] = DZDG_DZDGYZ;
          dg[2][0][0] = DXDG_DXDGXZ;
          dg[2][0][1] = DYDG_DYDGXZ;
          dg[2][0][2] = DZDG_DZDGXZ;
          dg[2][1][0] = DXDG_DXDGYZ;
          dg[2][1][1] = DYDG_DYDGYZ;
          dg[2][1][2] = DZDG_DZDGYZ;
          dg[2][2][0] = DXDG_DXDGZZ;
          dg[2][2][1] = DYDG_DYDGZZ;
          dg[2][2][2] = DZDG_DZDGZZ;
          for (int ti = 0; ti < 3; ti++)
           for (int tj = 0; tj < 3; tj++)
            for (int tk = 0; tk < 3; tk++)
            {
                ADMMass_VolumeMass_pot_x[ijk] +=
                    u[ti][tj] * u[tk][0] *
                    ( dg[ti][tk][tj] - dg[ti][tj][tk] );
                ADMMass_VolumeMass_pot_y[ijk] +=
                    u[ti][tj] * u[tk][1] *
                    ( dg[ti][tk][tj] - dg[ti][tj][tk] );
                ADMMass_VolumeMass_pot_z[ijk] +=
                    u[ti][tj] * u[tk][2] *
                    ( dg[ti][tk][tj] - dg[ti][tj][tk] );
            }
          ADMMass_VolumeMass_pot_x[ijk] *= alp[ijk] * sqrt(DETG_DETG) /
                                           16 / 3.14159265;
          ADMMass_VolumeMass_pot_y[ijk] *= alp[ijk] * sqrt(DETG_DETG) /
                                           16 / 3.14159265;
          ADMMass_VolumeMass_pot_z[ijk] *= alp[ijk] * sqrt(DETG_DETG) /
                                           16 / 3.14159265;
      }
    for(i=4; i<cctk_lsh[0]-4; i++)
     for(j=4; j<cctk_lsh[1]-4; j++)
      for(k=4; k<cctk_lsh[2]-4; k++)
      {
          ijk = CCTK_GFINDEX3D(cctkGH, i, j, k);
          ADMMass_VolumeMass_GF[ijk] = 0.0;
          if ((!ADMMass_Excise_Horizons ||
               SpaceMask_CheckStateBits(space_mask, ijk,
                                        mask_descriptor,
                                        state_descriptor_outside)) &&
              ((x[ijk]-ADMMass_x_pos[*ADMMass_LoopCounter])*
               (x[ijk]-ADMMass_x_pos[*ADMMass_LoopCounter]) +
               (y[ijk]-ADMMass_y_pos[*ADMMass_LoopCounter])*
               (y[ijk]-ADMMass_y_pos[*ADMMass_LoopCounter]) +
               (z[ijk]-ADMMass_z_pos[*ADMMass_LoopCounter])*
               (z[ijk]-ADMMass_z_pos[*ADMMass_LoopCounter]) <=
               radius * radius))
          {
              ADMMass_VolumeMass_GF[ijk] +=
               (i2dx*(ADMMass_VolumeMass_pot_x[CCTK_GFINDEX3D(cctkGH,i+1,j,k)]-
                      ADMMass_VolumeMass_pot_x[CCTK_GFINDEX3D(cctkGH,i-1,j,k)])+
                i2dy*(ADMMass_VolumeMass_pot_y[CCTK_GFINDEX3D(cctkGH,i,j+1,k)]-
                      ADMMass_VolumeMass_pot_y[CCTK_GFINDEX3D(cctkGH,i,j-1,k)])+
                i2dz*(ADMMass_VolumeMass_pot_z[CCTK_GFINDEX3D(cctkGH,i,j,k+1)]-
                      ADMMass_VolumeMass_pot_z[CCTK_GFINDEX3D(cctkGH,i,j,k-1)]))
               *dx*dy*dz;
              local_sum += ADMMass_VolumeMass_GF[ijk];
          }
      }
    #include "CactusEinstein/ADMMacros/src/macro/UPPERMET_undefine.h"
    #include "CactusEinstein/ADMMacros/src/macro/DG_undefine.h"
    #include "CactusEinstein/ADMMacros/src/macro/ADM_Spacing_undefine.h"
    /*printf("ADM mass local to one processor (volume): %g\n", local_sum);*/
}

void ADMMass_Volume_Global(CCTK_ARGUMENTS)
{
    DECLARE_CCTK_ARGUMENTS
    DECLARE_CCTK_PARAMETERS

    CCTK_INT reduction_handle;
    CCTK_REAL radius;

    reduction_handle = CCTK_ReductionHandle("sum");
    if (reduction_handle < 0)
        CCTK_WARN(0, "Unable to ge reduction handle.");

    if (CCTK_Reduce(cctkGH, -1, reduction_handle, 1,
                    CCTK_VARIABLE_REAL,
                    &ADMMass_VolumeMass[*ADMMass_LoopCounter], 1,
                    CCTK_VarIndex("ADMMass::ADMMass_VolumeMass_GF")))
        CCTK_WARN(0, "Error while reducing ADMMass_VolumeMass_GF");
    
    if (ADMMass_use_boundary_distance_as_volume_radius)
        radius = ADMMass_boundary_distance[*ADMMass_LoopCounter];
    else
        radius = ADMMass_volume_radius[*ADMMass_LoopCounter];
    printf("ADM mass, volume, detector %d: %g %g\n", *ADMMass_LoopCounter,
           radius, ADMMass_VolumeMass[*ADMMass_LoopCounter]);
}