aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: fe73a123b7c2cda3fe791d61a5418115c339d94f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
% *======================================================================*
%  Cactus Thorn template for ThornGuide documentation
%  Author: Ian Kelley
%  Date: Sun Jun 02, 2002
%  $Header$
%
%  Thorn documentation in the latex file doc/documentation.tex
%  will be included in ThornGuides built with the Cactus make system.
%  The scripts employed by the make system automatically include
%  pages about variables, parameters and scheduling parsed from the
%  relevant thorn CCL files.
%
%  This template contains guidelines which help to assure that your
%  documentation will be correctly added to ThornGuides. More
%  information is available in the Cactus UsersGuide.
%
%  Guidelines:
%   - Do not change anything before the line
%       % START CACTUS THORNGUIDE",
%     except for filling in the title, author, date, etc. fields.
%        - Each of these fields should only be on ONE line.
%        - Author names should be separated with a \\ or a comma.
%   - You can define your own macros, but they must appear after
%     the START CACTUS THORNGUIDE line, and must not redefine standard
%     latex commands.
%   - To avoid name clashes with other thorns, 'labels', 'citations',
%     'references', and 'image' names should conform to the following
%     convention:
%       ARRANGEMENT_THORN_LABEL
%     For example, an image wave.eps in the arrangement CactusWave and
%     thorn WaveToyC should be renamed to CactusWave_WaveToyC_wave.eps
%   - Graphics should only be included using the graphicx package.
%     More specifically, with the "\includegraphics" command.  Do
%     not specify any graphic file extensions in your .tex file. This
%     will allow us to create a PDF version of the ThornGuide
%     via pdflatex.
%   - References should be included with the latex "\bibitem" command.
%   - Use \begin{abstract}...\end{abstract} instead of \abstract{...}
%   - Do not use \appendix, instead include any appendices you need as
%     standard sections.
%   - For the benefit of our Perl scripts, and for future extensions,
%     please use simple latex.
%
% *======================================================================*
%
% Example of including a graphic image:
%    \begin{figure}[ht]
% 	\begin{center}
%    	   \includegraphics[width=6cm]{MyArrangement_MyThorn_MyFigure}
% 	\end{center}
% 	\caption{Illustration of this and that}
% 	\label{MyArrangement_MyThorn_MyLabel}
%    \end{figure}
%
% Example of using a label:
%   \label{MyArrangement_MyThorn_MyLabel}
%
% Example of a citation:
%    \cite{MyArrangement_MyThorn_Author99}
%
% Example of including a reference
%   \bibitem{MyArrangement_MyThorn_Author99}
%   {J. Author, {\em The Title of the Book, Journal, or periodical}, 1 (1999),
%   1--16. {\tt http://www.nowhere.com/}}
%
% *======================================================================*

% If you are using CVS use this line to give version information
% $Header$

\documentclass{article}

% Use the Cactus ThornGuide style file
% (Automatically used from Cactus distribution, if you have a
%  thorn without the Cactus Flesh download this from the Cactus
%  homepage at www.cactuscode.org)
\usepackage{../../../../doc/latex/cactus}

\begin{document}

\title{ADMMacros}
\author{Tom Goodale}
\date{$ $Date$ $}

\maketitle

% Do not delete next line
% START CACTUS THORNGUIDE

% Add all definitions used in this documentation here
%   \def\mydef etc
\def\del{\nabla}

\begin{abstract}
Provides macros for common relativity calculations, using the {\bf ADMBase} variables.
\end{abstract}

\section{Purpose}

This thorn provides various macros which can be used to calculate
quantities, such as the Christoffel Symbol or Riemann Tensor
components, using the basic variables of thorn {\tt ADMBase} (and {\tt
  StaticConformal} if required).  The macros can be used in both
Fortran and C code. The macros work pointwise to calculate quantities
at specific grid points, which are always labelled by {\tt i}, {\tt j}
and {\tt k}. They are written in such a way that needed quantities
which are already calculated are reused.

\subsection{Finite Differencing}

By default, the macros use centered 2nd~order finite differencing,
with 3-point finite difference molecules.
That is, when finite differencing the the grid-point indices
${\tt i} \pm 1$, ${\tt j} \pm 1$, and ${\tt k} \pm 1$ must also be valid.

Some of the macros also support centered 4th~order finite differencing;
This is selected with the parameter \verb|spatial_order|.  This may be
set to either~$2$ or~$4$; it defaults to~$2$.  If it's set to~$4$, then
5-point finite difference molecules are used, so the grid-point indices
${\tt i} \pm 2$, ${\tt j} \pm 2$, and ${\tt k} \pm 2$ must also be valid.

At present 4th~order finite differencing is only supported for Fortran code.
(That is, at present the C~versions of the macros simply ignore the
\verb|spatial_order| parameter.)

\section{Using ADM Macros}

Each macro described in Section~\ref{admmacros:macros} is implemented using three include
files.

\begin{itemize}

\item {\tt <MACRONAME>\_declare.h} sets up the declarations for the internal macro
        variables. All the internal (hidden) variables have names beginning with
        the macro name. This file should be included in the declarations section
        of your routine.

\item {\tt <MACRONAME>\_guts.h} is the actual included source code which will calculate
       the quantities.

\item {\tt <MACRONAME>\_undefine.h} resets the macros. This file {\bf must be included}
        at the end of every loop using macros. Without an undefine file, a second loop
        using macros will assume that quantities have already been calculated.

\end{itemize}

To use the macros, first make sure that you really want to use the
macro pointwise, and that you have already set the indices $i$, $j$,
and $k$ to identify the correct grid point.

Find the name of the macro from the table in
Section~\ref{admmacros:macros} and put the include files in the
correct place following the instructions above. Note that all ADMMacro
include files are in the directory {\tt
  CactusEinstein/ADMMacros/src/macros}, so this means adding lines
such as

{\tt
\begin{verbatim}
#include "CactusEinstein/ADMacros/src/macro/<MACRONAME>_<TYPE>.h"
\end{verbatim}
}

Each variable that the macro calculates is listed in the table of
Section~\ref{admmacros:macros}.  Note that these variable names are
themselves macros and are case sensitive. {\bf Always use the macro
variables on the right hand sides of equations, never redefine them
yourself, since they may be used in later (hidden) calculations.}

\subsection{Fortran}

If you are using the macros inside a Fortran function then the
{\tt i}, {\tt j} and {\tt k} indices are used directly.  This is
shown in the Fortran example below.

\subsection{C}

If you are using the macros inside a C function then you must define
the index {\tt ijk}, which can be found from {\tt i}, {\tt j} and {\tt k}
using the macro {\tt CCTK\_GFINDEX3D(cctkGH,i,j,k)}, and also the offsets
{\tt di}, {\tt dj} and {\tt dk}, so that the point $(i-1,j,k)$ is the same
as {\tt ijk - di} and so on.  That is, you must define
{\tt di = 1}, {\tt dj = cctk\_lsh[0]} and {\tt dk = cctk\_lsh[0]*cctk\_lsh[1]}.
The C example below should make this clearer.

\section{Examples}

\subsection{Fortran}

This example comes from thorn {\tt CactusEinstein/Maximal} and uses the $trK$ macro to
calculate the trace of the extrinsic curvature.

\begin{verbatim}
c     Declarations for macros.
#include "CactusEinstein/ADMMacros/src/macro/TRK_declare.h"

<CUT>

c     Add the shift term: N = B^i D_i(trK).
      if ((maxshift).and.(shift_state.eq.1)) then
         do k=1,nz
            do j=1,ny
               do i=1,nx
#include "CactusEinstein/ADMMacros/src/macro/TRK_guts.h"
                  K_temp(i,j,k) = TRK_TRK
                end do
             end do
         end do
#include "CactusEinstein/ADMMacros/src/macro/TRK_undefine.h"
\end{verbatim}

\subsection{C}

This function computes the curved-space Laplacian of a scalar field $\phi$,
$\del^i \del_i \phi
	= g^{ij} \partial_{ij} \phi - g^{ij} \Gamma^k_{ij} \partial_k \phi$
assuming that the partial derivatives $\partial_{ij} \phi$ and $\partial_k \phi$
have already been computed:

\newpage	% we'd like the entire example to fit on a single page
\begingroup
\footnotesize
\begin{verbatim}
/*
 * This function computes the curved-space Laplacian of a scalar field,
 * $\del^i \del_i \phi
 *     = g^{ij} \partial_{ij} \phi - g^{ij} \Gamma^k_{ij} \partial_k \phi$
 * at the interior grid points only; it doesn't do anything at all on the
 * boundaries.
 *
 * This function uses the following Cactus grid functions:
 * input:   dx_phi, dy_phi, dz_phi       # 1st derivatives of phi
 *          dxx_phi, dxy_phi, dxz_phi,   # 2nd derivatives of phi
 *                   dyy_phi, dyz_phi,
 *                            dzz_phi
 * output:  Laplacian_phi
 */
void compute_Laplacian(CCTK_ARGUMENTS)
{
DECLARE_CCTK_ARGUMENTS
int i,j,k;

/* contracted Christoffel symbols $\Gamma^k = g^{ij} \Gamma^k_{ij}$ */
CCTK_REAL Gamma_u_x, Gamma_u_y, Gamma_u_z;

/* magic variables for ADMMacros (see the ADMMacros thorn guide for details) */
const int di = 1;
const int dj = cctk_lsh[0];
const int dk = cctk_lsh[0]*cctk_lsh[1];

/* declare the ADMMacros variables for $g^{ij}$ and $\Gamma^k_{ij}$ */
#include "CactusEinstein/ADMMacros/src/macro/UPPERMET_declare.h"
#include "CactusEinstein/ADMMacros/src/macro/CHR2_declare.h"

    for (k = 1 ; k < cctk_lsh[2]-1 ; ++k)
    {
    for (j = 1 ; j < cctk_lsh[1]-1 ; ++j)
    {
    for (i = 1 ; i < cctk_lsh[0]-1 ; ++i)
    {
    const int ijk = CCTK_GFINDEX3D(cctkGH,i,j,k);   /* another magic variable for ADMMacros */

    /* compute the ADMMacros $g^{ij}$ and $\Gamma^k_{ij}$ variables at this grid point */
    #include "CactusEinstein/ADMMacros/src/macro/UPPERMET_guts.h"
    #include "CactusEinstein/ADMMacros/src/macro/CHR2_guts.h"

    /* compute the contracted Christoffel symbols $\Gamma^k = g^{ij} \Gamma^k_{ij}$ */
    Gamma_u_x =
      UPPERMET_UXX*CHR2_XXX + 2.0*UPPERMET_UXY*CHR2_XXY + 2.0*UPPERMET_UXZ*CHR2_XXZ
                            +     UPPERMET_UYY*CHR2_XYY + 2.0*UPPERMET_UYZ*CHR2_XYZ
                                                        +     UPPERMET_UZZ*CHR2_XZZ;
    Gamma_u_y =
      UPPERMET_UXX*CHR2_YXX + 2.0*UPPERMET_UXY*CHR2_YXY + 2.0*UPPERMET_UXZ*CHR2_YXZ
                            +     UPPERMET_UYY*CHR2_YYY + 2.0*UPPERMET_UYZ*CHR2_YYZ
                                                        +     UPPERMET_UZZ*CHR2_YZZ;
    Gamma_u_z =
      UPPERMET_UXX*CHR2_ZXX + 2.0*UPPERMET_UXY*CHR2_ZXY + 2.0*UPPERMET_UXZ*CHR2_ZXZ
                            +     UPPERMET_UYY*CHR2_ZYY + 2.0*UPPERMET_UYZ*CHR2_ZYZ
                                                        +     UPPERMET_UZZ*CHR2_ZZZ;

    /* compute the Laplacian */
    Laplacian_phi[ijk] =
      UPPERMET_UXX*dxx_phi[ijk] + 2.0*UPPERMET_UXY*dxy_phi[ijk] + 2.0*UPPERMET_UXZ*dxz_phi[ijk]
                                +     UPPERMET_UYY*dyy_phi[ijk] + 2.0*UPPERMET_UYZ*dyz_phi[ijk]
                                                                +     UPPERMET_UZZ*dzz_phi[ijk]
      -  Gamma_u_x*dx_phi[ijk]  -        Gamma_u_y*dy_phi[ijk]  -        Gamma_u_z*dz_phi[ijk];
    }
    }
    }

#include "CactusEinstein/ADMMacros/src/macro/UPPERMET_undefine.h"
#include "CactusEinstein/ADMMacros/src/macro/CHR2_undefine.h"
}
\end{verbatim}
\endgroup

\section{Macros}
\label{admmacros:macros}
Macros exist for the following quantities

\begin{tabular}{p{5cm}p{5cm}p{5cm}}
{\bf Calculates} & {\bf Macro Name} & {\bf Sets variables} \\
All first spatial derivatives of lapse, $\alpha_{,i}$: & DA & DA\_DXDA, DA\_DYDA, DA\_DZDA\\
All second spatial derivatives of lapse, $\alpha_{,ij}$: & DDA & DDA\_DXXDA, DDA\_DXYDA, DDA\_DXZDA, DDA\_DYYDA, DDA\_DYZDA, DDA\_DZZDA\\
All second covariant spatial derivatives of lapse, $\alpha_{;ij}$: & CDCDA &\\
All first spatial derivatives of shift, $\beta^{i}_{\;\;j}$: & DB &\\
All first covariant derivatives of the extrinsic curvature, $K_{ij;kl}$ & CDK &\\
First covariant derivatives of the extrinsic curvature, $K_{ij;x}$, $K_{ij;y}$, $K_{ij;z}$ & CDXCDK, CDYCDK, CDZCDK &\\
Determinant of 3-metric: & DETG &\\
Upper 3-metric, $g{ij}$:& UPPERMET &\\
Trace of extrinsic curvature $trK$: & TRK &\\
Trace of stress energy tensor: & TRT &\\
Hamiltonian constraint: & HAMADM & \\
Partial derivatives of extrinsic curvature, $K_{ij,x}$, $K_{ij,y}$, $K_{ij,z}$: & DXDK, DYDK, DZDK &\\
First partial derivatives of 3-metric, $g_{ij,x}$, $g_{ij,y}$, $g_{ij,z}$: & DXDG, DYDG, DZDG & \\
All first partial derivatives of 3-metric, $g_{ij,k}$: & DG &\\
First covariant derivatives of 3-metric, $g_{ij;x}$, $g_{ij;y}$, $g_{ij;z}$: & DXDCG, DYDCG, DZDCG &\\
Second partial derivatives of 3-metric, $g_{ij,xx}$, $g_{ij,xy}$, $g_{ij,xz}$: & DXXDG, DXYDG, DXZDG, DYYDG, DYZDG, DZZDG& \\
All second partial derivative of 3-metric, $g_{ij,lm}$ & DDG &\\
Ricci tensor $R_{ij}$: & RICCI &\\
Trace of Ricci tensor $R$: & TRRICCI &\\
Christoffel symbols of first kind: $\Gamma_{cab}$ & CHR1&\\
Christoffel symbols of second kind $\Gamma^{c}_{\;\;ab}$: & CHR2& \\
Momentum constraints & MOMX, MOMY, MOMZ&\\
Source term in evolution equation for conformal metric, $\tilde{g}_{ij,t}$: & DCGDT &\\

\end{tabular}

\section{Definitions}

\begin{equation}
\Gamma_{cab} = \frac{1}{2}\left(g_{ac,b} + g_{bc,a} - g_{ab,c}\right)
\end{equation}

\begin{equation}
\Gamma^{c}_{\;\;ab} = g^{cd}\Gamma_{dab} = \frac{1}{2} g^{cd} \left(g_{ad,b} + g_{bd,a} - g_{ab,d}\right)
\end{equation}

%\section{Comments}

% Do not delete next line
% END CACTUS THORNGUIDE
\end{document}