aboutsummaryrefslogtreecommitdiff
path: root/doc/documentation.tex
blob: 22a819ad93709bef28e882519f136e8d6e7b633d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
\documentclass{article}

% Use the Cactus ThornGuide style file
% (Automatically used from Cactus distribution, if you have a 
%  thorn without the Cactus Flesh download this from the Cactus
%  homepage at www.cactuscode.org)
\usepackage{../../../../doc/ThornGuide/cactus}

\begin{document}

\title{ADMAnalysis}
\author{Tom Goodale et al}
\date{$ $Date$ $}

\maketitle

% Do not delete next line
% START CACTUS THORNGUIDE

\begin{abstract}
Basic analysis of the metric and extrinsic curvature tensors
\end{abstract}

\section{Purpose}

This thorn provides analysis routines to calculate the following quantities:

\begin{itemize}
\item
The trace of the extrinsic curvature ($trK$).
\item
The determinant of the 3-metric ($detg$).
\item
The components of the 3-metric in spherical coordinates \\
($g_{rr},g_{r\theta},g_{r\phi},g_{\theta\theta},g_{\phi\theta},g_{\phi\phi}$).
\item
The components of the extrinsic curvature in spherical coordinates \\
($K_{rr},K_{r\theta},K_{r\phi},K_{\theta\theta},K_{\theta\phi},K_{\phi\phi}$).
\item The components of the 3-Ricci tensor in cartesian coordinates \\
(${\cal R}_{ij}$) for $i,j \in \{1,2,3\}.
\item The Ricci scalar (${\cal R}).
\end{itemize}

\section{Trace of Extrinsic Curvature}

The trace of the extrinsic curvature at each point on the grid is placed in
the grid function {\tt trK}. The algorithm for calculating the trace 
uses the physical metric, that is it includes any conformal factor.

\begin{equation}
{\tt trK} \equiv tr K = \frac{1}{\psi^4} g^{ij} K_{ij}
\end{equation}

\section{Determinant of 3-Metric}

The determinant of the 3-metric at each point on the grid is placed in
the grid function {\tt detg}. This is always the determinant of the 
conformal metric, that is it does not include any conformal factor.

\begin{equation}
{\tt detg} \equiv det g =
-g_{13}^2*g_{22}+2*g_{12}*g_{13}*g_{23}-g_{11}*g_{23}^2-
g_{12}^2*g_{33}+g_{11}*g_{22}*g_{33}
\end{equation}


\section{Transformation to Spherical Cooordinates}

The values of the metric and/or extrinsic curvature in a spherical
polar coordinate system $(r,\theta,\phi)$ evaluated at each point on
the computational grid are placed in the grid functions ({\tt grr},
{\tt grt}, {\tt grp}, {\tt gtt}, {\tt gtp}, {\tt gpp}) and ({\tt krr},
{\tt krt}, {\tt krp}, {\tt ktt}, {\tt ktp}, {\tt kpp}).
In the spherical transformation, the $\theta$ coordinate is referred to
as {\bf q} and the $\phi$ as {\bf p}.

The general transformation from Cartesian to Spherical for such tensors 
is

\begin{eqnarray*}
A_{rr}&=&
\sin^2\theta\cos^2\phi A_{xx}
+\sin^2\theta\sin^2\phi A_{yy}
+\cos^2\theta A_{zz}
+2\sin^2\theta\cos\phi\sin\phi A_{xy}
\\
&&
+2\sin\theta\cos\theta\cos\phi A_{xz}
+2\sin\theta\cos\theta\sin\phi A_{yz}
\\
A_{r\theta}&=&
r(\sin\theta\cos\theta\cos^2\phi A_{xx}
+2*\sin\theta\cos\theta\sin\phi\cos\phi A_{xy}
+(\cos^2\theta-\sin^2\theta)\cos\phi A_{xz}
\\
&&
+\sin\theta\cos\theta\sin^2\phi A_{yy}
+(\cos^2\theta-\sin^2\theta)\sin\phi A_{yz}
-\sin\theta\cos\theta A_{zz})
\\
A_{r\phi}&=&
r\sin\theta(-\sin\theta\sin\phi\cos\phi A_{xx}
-\sin\theta(\sin^2\phi-\cos^2\phi)A_{xy}
-\cos\theta\sin\phi A_{xz}
\\
&&
+\sin\theta\sin\phi\cos\phi A_{yy}
+\cos\theta\cos\phi A_{yz})
\\
A_{\theta\theta}&=&
r^2(\cos^2\theta\cos^2\phi A_{xx}
+2\cos^2\theta\sin\phi\cos\phi A_{xy}
-2\sin\theta\cos\theta\cos\phi A_{xz}
+\cos^2\theta\sin^2\phi A_{yy}
\\
&&
-2\sin\theta\cos\theta\sin\phi A_{yz}
+\sin^2\theta A_{zz})
\\
A_{\theta\phi}&=&
r^2\sin\theta(-\cos\theta\sin\phi\cos\phi A_{xx}
-\cos\theta(\sin^2\phi-\cos^2\phi)A_{xy}
+\sin\theta \sin\phi A_{xz}
\\
&&
+\cos\theta\sin\phi\cos\phi A_{yy}
-\sin\theta\cos\phi A_{yz})
\\
A_{\phi\phi}&=&
r^2\sin^2\theta(\sin^2\phi A_{xx}
-2\sin\phi\cos\phi A_{xy}
+\cos^2\phi A_{yy})
\end{eqnarray*}

If the parameter {\tt normalize\_dtheta\_dphi} is set to {\tt yes}, 
the angular components are projected onto the vectors $(r d\theta, r \sin\theta d \phi)$ instead of the default vector $(d \theta, d\phi)$. That is,

\begin{eqnarray*}
A_{\theta\theta} & \rightarrow & A_{\theta\theta}/r^2
\\
A_{\phi\phi}& \rightarrow & A_{\phi\phi}/(r^2\sin^2\theta)
\\
A_{r\theta} & \rightarrow & A_{r\theta}/r
\\
A_{r\phi} & \rightarrow & A_{r\phi}/(r\sin\theta)
\\
A_{\theta\phi} & \rightarrow & A_{\theta\phi}/r^2\sin\theta)
\end{eqnarray*}

\section{Computing the Ricci tensor and scalar}
\label{sec:ricci}

The computation of the Ricci tensor uses the ADMMacros thorn. The
calculation of the Ricci scalar uses the generic trace routine in this
thorn.

% Do not delete next line
% END CACTUS THORNGUIDE

\end{document}