summaryrefslogtreecommitdiff
path: root/horizon.py
blob: ea491eafafbefc76b4de1baf75c1d0953136ef89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# -*- coding: utf-8 -*-

from . import curvature
from . import diff
from . import interp
from . import utils

import itertools as it
import numpy as np
import scipy.integrate

def calc_expansion(x, z, metric, curv, surf, direction = 1, diff_op = diff.fd4):
    """
    Calculate expansion of null geodesics on a sequence of surfaces [1]. The
    surfaces are specified as level surfaces of F(r, θ) = r - h(θ).

    [1] Alcubierre (2008): Introduction to 3+1 Numerical Relativity, chapter
        6.7, specifically equation (6.7.13).

    :param array_like x: 1D array of x coordinates.
    :param array_like z: 1D array of z-coordinates.
    :param array_like metric: 4D array of spatial metric values at the grid
                              formed by x and z. metric[i, j, k, l] is the ijth
                              component of the metric at the point (X=x[l],
                              Z=z[k]).
    :param array_like curv: values of the extrinsic curvature, otherwise same as
                            metric.
    :param callable surf: A callable that specifies the surfaces. Accepts an
                          array of θ and returns the array of correponding h.
    :param int direction: Values of 1/-1 specify that the expansion of outgoing
                          or ingoing geodesics is to be computed.
    :rtype: array_like, shape (z.shape[0], x.shape[0])
    :return: Expansion values at the grid formed from x and z.
    """
    dX = [x[1] - x[0], 0, z[1] - z[0]]

    X, Z  = np.meshgrid(x, z)
    R     = np.sqrt(X ** 2 + Z ** 2)
    Theta = np.where(R > 1e-8, np.arccos(Z / R), 0.0)

    metric_u = utils.matrix_invert(metric)

    Gamma = curvature.calc_christoffel(x, z, metric, diff_op)

    trK = np.einsum('ij...,ij...', metric_u, curv)

    F = R[:]
    for i in range(Theta.shape[0]):
        F[i] -= surf.eval(Theta[i])

    dF = np.empty((3,) + F.shape)
    dF[0] = diff_op(F, 1, dX[0])
    dF[1] = 0.0
    dF[2] = diff_op(F, 0, dX[2])

    s_l  = direction * dF[:]
    s_u  = np.einsum('ij...,j...->i...', metric_u, s_l)
    s_u /= np.sqrt(np.einsum('ij...,i...,j...', metric, s_u, s_u))

    ds_u = np.zeros((3,) + s_u.shape)
    for i in range(3):
        for j in range(3):
            if i == 1 or j == 1:
                continue
            diff_dir = 1 if (i == 0) else 0
            ds_u[i, j] = diff_op(s_u[j], diff_dir, dX[i])
    ds_u[1, 1] = np.where(np.abs(X) > 1e-8, s_u[0] / X, ds_u[0, 0])

    Div_s_u = np.einsum('ii...', ds_u) + np.einsum('iki...,k...', Gamma, s_u)

    H = Div_s_u - trK + np.einsum('ij...,i...,j...', curv, s_u, s_u)

    return H

def _tensor_transform_cart_spherical_d2(theta, r, x, z, tens):
    zero = np.zeros_like(theta)
    st   = np.sin(theta)
    ct   = np.cos(theta)
    jac  = np.array([[st,    r * ct,   zero ],
                     [zero,    zero, r * st ],
                     [ct,   -r * st,   zero ]])
    return np.einsum('ai...,bj...,ab...->ij...', jac, jac, tens)

def _tensor_transform_cart_spherical_u2(theta, r, x, z, tens):
    eps = 1e-10 # small number to replace NaNs with just huge numbers
    x = np.where(np.abs(x) > eps, x, eps)

    zero = np.zeros_like(theta)
    st = np.sin(theta)
    ct = np.cos(theta)
    r2 = r * r
    # ∂ spherical / ∂ cart
    jac_inv = np.array([[st,       zero,      ct ],
                        [z / r2,   zero, -x / r2 ],
                        [zero,   1. / x,     zero ]])
    return np.einsum('ai...,bj...,ij...->ab...', jac_inv, jac_inv, tens)

def _dtensor_transform_cart_spherical_d2(theta, r, x, z, tens, dtens):
    zero = np.zeros_like(theta)
    st = np.sin(theta)
    ct = np.cos(theta)
    jac = np.array([[st,    r * ct,   zero ],
                    [zero,    zero, r * st ],
                    [ct,   -r * st,   zero ]])
    djac = np.array([[ # ∂^2 x
                        [ zero, ct,    zero ], # / ∂r
                        [ ct, -r * st, zero ], # / ∂θ
                        [ zero, zero,    -x ], # / ∂φ
                     ],
                     [ # ∂^2 y
                         [ zero, zero,     st ], # / ∂r
                         [ zero, zero, r * ct ], # / ∂θ
                         [ st, r * ct, zero   ], # / ∂φ
                     ],
                     [ # ∂^2 z
                         [ zero,     -st, zero ], # / ∂r
                         [ -st,  -r * ct, zero ], # / ∂θ
                         [ zero,    zero, zero ], # / ∂φ
                     ]])

    return np.einsum('bij...,ck...,bc...->ijk...', djac, jac, tens) +\
           np.einsum('bj...,cik...,bc...->ijk...', jac, djac, tens) +\
           np.einsum('bj...,ck...,ai...,abc...->ijk...', jac, jac, jac, dtens)

def _christoffel_transform_cart_spherical(theta, r, x, z, Gamma_cart):
    eps = 1e-10 # small number to replace NaNs with just huge numbers
    x = np.where(np.abs(x) > eps, x, eps)

    zero = np.zeros_like(theta)
    st = np.sin(theta)
    ct = np.cos(theta)
    r2 = r * r
    # ∂ cart / ∂ spherical
    jac = np.array([[st,    r * ct,   zero ],
                    [zero,    zero, r * st ],
                    [ct,   -r * st,   zero ]])
    # ∂ spherical / ∂ cart
    jac_inv = np.array([[st,       zero,      ct ],
                        [z / r2,   zero, -x / r2 ],
                        [zero,   1. / x,     zero ]])
    djac = np.array([[ # ∂^2 x
                        [ zero, ct,    zero ], # / ∂r
                        [ ct, -r * st, zero ], # / ∂θ
                        [ zero, zero,    -x ], # / ∂φ
                     ],
                     [ # ∂^2 y
                         [ zero, zero,     st ], # / ∂r
                         [ zero, zero, r * ct ], # / ∂θ
                         [ st, r * ct, zero   ], # / ∂φ
                     ],
                     [ # ∂^2 z
                         [ zero,     -st, zero ], # / ∂r
                         [ -st,  -r * ct, zero ], # / ∂θ
                         [ zero,    zero, zero ], # / ∂φ
                     ]])

    return np.einsum('ai...,jb...,kc...,ijk...->abc...', jac_inv, jac, jac, Gamma_cart) +\
           np.einsum('ak...,kbc...->abc...', jac_inv, djac)

def _dchristoffel_transform_cart_spherical(theta, r, x, z, Gamma_cart, dGamma_cart):
    eps = 1e-10 # small number to replace NaNs with just huge numbers
    x = np.where(np.abs(x) > eps, x, eps)

    zero = np.zeros_like(theta)
    st = np.sin(theta)
    ct = np.cos(theta)

    r2 = r * r
    r3 = r2 * r
    r4 = r3 * r

    x2 = x * x
    x4 = x2 * x2

    z2 = z * z
    # ∂ cart / ∂ spherical
    jac = np.array([[st,    r * ct,   zero ],
                    [zero,    zero, r * st ],
                    [ct,   -r * st,   zero ]])
    # ∂ spherical / ∂ cart
    jac_inv = np.array([[st,       zero,      ct ],
                        [z / r2,   zero, -x / r2 ],
                        [zero,   1. / x,     zero ]])
    djac = np.array([[ # ∂^2 x
                        [ zero, ct,    zero ], # / ∂r
                        [ ct, -r * st, zero ], # / ∂θ
                        [ zero, zero,    -x ], # / ∂φ
                     ],
                     [ # ∂^2 y
                         [ zero, zero,     st ], # / ∂r
                         [ zero, zero, r * ct ], # / ∂θ
                         [ st, r * ct, zero   ], # / ∂φ
                     ],
                     [ # ∂^2 z
                         [ zero,     -st, zero ], # / ∂r
                         [ -st,  -r * ct, zero ], # / ∂θ
                         [ zero,    zero, zero ], # / ∂φ
                     ]])
    djac_inv = np.array([[ # ∂^2 r
                             [ z2 / r3,     zero,   -x * z / r3 ], # / ∂x
                             [ zero,      1. / r,          zero ], # / ∂y
                             [ -x * z / r3, zero,       x2 / r3 ], # / ∂z
                         ],
                         [ # ∂^2 θ
                             [     -2 * z * np.abs(x) / r4,                                       zero, np.sign(x) * (x2 - z2) / r4], # / ∂x
                             [                        zero, z * (x4 + x2 * z2) * np.abs(x) / (r4 * x4),                       zero ], # / ∂y
                             [ np.sign(x) * (x2 - z2) / r4,                                       zero,   2 * z * np.abs(x) / r4   ], # / ∂z
                         ],
                         [ # ∂^2 φ
                             [ zero,     -1 / x2, zero ], # / ∂x
                             [ -1 / x2,     zero, zero ], # / ∂y
                             [ zero,        zero, zero ], # / ∂z
                         ]])

    d2jac = np.array([[ # ∂^3 x
                         [ # / ∂r
                             [ zero,   zero,    zero ], # / ∂r
                             [ zero,    -st,    zero ], # / ∂θ
                             [ zero,   zero,     -st ], # / ∂φ
                         ],
                         [ # / ∂θ
                             [ zero,    -st,    zero ], # / ∂r
                             [  -st,    -ct,    zero ], # / ∂θ
                             [ zero,   zero, -r * ct ], # / ∂φ
                         ],
                         [ # / ∂φ
                             [ zero,   zero,     -st ], # / ∂r
                             [ zero,   zero, -r * ct ], # / ∂θ
                             [ -st, -r * ct,    zero ], # / ∂φ
                         ],
                      ],
                      [ # ∂^3 y
                         [ # / ∂r
                             [ zero,   zero,    zero ], # / ∂r
                             [ zero,   zero,      ct ], # / ∂θ
                             [ zero,     ct,    zero ], # / ∂φ
                         ],
                         [ # / ∂θ
                             [ zero,   zero,      ct ], # / ∂r
                             [ zero,   zero, -r * st ], # / ∂θ
                             [  ct, -r * st,    zero ], # / ∂φ
                         ],
                         [ # / ∂φ
                             [ zero,     ct,    zero ], # / ∂r
                             [  ct, -r * st,    zero ], # / ∂θ
                             [ zero,   zero, -r * st ], # / ∂φ
                         ],
                      ],
                      [ # ∂^3 z
                         [ # / ∂r
                             [ zero,   zero,    zero ], # / ∂r
                             [ zero,    -ct,    zero ], # / ∂θ
                             [ zero,   zero,    zero ], # / ∂φ
                         ],
                         [ # / ∂θ
                             [ zero,    -ct,    zero ], # / ∂r
                             [  -ct, r * st,    zero ], # / ∂θ
                             [ zero,   zero,    zero ], # / ∂φ
                         ],
                         [ # / ∂φ
                             [ zero,   zero,    zero ], # / ∂r
                             [ zero,   zero,    zero ], # / ∂θ
                             [ zero,   zero,    zero ], # / ∂φ
                         ],
                      ]])

    for i, j, k, l in it.product(range(3), repeat = 4):
        assert(np.all(d2jac[i, j, k, l] == d2jac[i, l, j, k]))
        assert(np.all(d2jac[i, j, k, l] == d2jac[i, k, l, j]))
        assert(np.all(d2jac[i, j, k, l] == d2jac[i, l, k, j]))

    # this is broken (probably borked index somewhere)
    #return np.einsum('ia...,bj...,ck...,dl...,dabc...->lijk...', jac_inv,  jac, jac,  jac, dGamma_cart) +\
    #       np.einsum('iad...,dl...,bj...,ck...,abc...->lijk...', djac_inv, jac, jac,  jac,  Gamma_cart) +\
    #       np.einsum('ia...,bjl...,ck...,abc...->lijk...',       jac_inv,      djac,  jac,  Gamma_cart) +\
    #       np.einsum('ia...,bj...,ckl...,abc...->lijk...',       jac_inv,       jac, djac,  Gamma_cart) +\
    #       np.einsum('ajkl...,ia...->lijk...', d2jac, jac_inv)                                          +\
    #       np.einsum('ajk...,iab...,bl...->lijk...', djac, djac_inv, jac_inv)

    ret = np.empty((3,) + Gamma_cart.shape)
    for a, b, c, d in it.product(range(3), repeat = 4):
        val = np.zeros_like(theta)
        for i, j, k, l in it.product(range(3), repeat = 4):
            val += jac[l, d] * jac_inv[a, i] * jac[j, b] * jac[k, c] * dGamma_cart[l, i, j, k]

        for i, j, k in it.product(range(3), repeat = 3):
            val += (np.einsum('i...,i...', djac_inv[a, i], jac[:, d]) * jac[j, b] * jac[k, c] +
                    jac_inv[a, i] * djac[j, b, d] * jac[k, c] +
                    jac_inv[a, i] * jac[j, b] * djac[k, c, d]) * Gamma_cart[i, j, k]

        for i, j in it.product(range(3), repeat = 2):
            val += djac[i, b, c] * djac_inv[a, i, j] * jac[j, d]

        for i in range(3):
            val += d2jac[i, b, c, d] * jac_inv[a, i]

        ret[d, a, b, c] = val

    return ret

class AHCalc(object):
    """
    Object encapsulating an axisymmetric apparent horizon calculation, intended
    to be used with the nonlin_solve_1d solver.
    """

    """
    A list of callables calculating the right-hand side of the axisymmetric AH
    equation and its variational derivatives.
    Intended to be passed to nonlin_solve_1d.
    """
    Fs = None

    _diff_op        = None
    _diff2_op       = None
    _interp_stencil = None

    _X              = None
    _Z              = None
    _metric_cart    = None
    _curv_cart      = None
    _metric_u_cart  = None
    _dmetric_cart   = None
    _dmetric_u_cart = None
    _d2metric_cart  = None
    _Gamma_cart     = None
    _dGamma_cart    = None
    _dcurv_cart     = None

    class _RHSFunc:
        _hc = None

        def __init__(self, hc):
            self._hc = hc

        def __call__(self, val = 0.0):
            rhs      = lambda x, y: self._hc._ah_rhs(x, y, val = val)
            rhs_var0 = lambda x, y: self._hc._var_diff(x, y, rhs, 0)
            rhs_var1 = lambda x, y: self._hc._var_diff(x, y, rhs, 1)

            return (rhs, rhs_var0, rhs_var1)

        def __getitem__(self, key):
            return self()[key]

        def __len__(self):
            return len(self())

        def __iter__(self):
            return iter(self())

    def __init__(self, X, Z, metric_cart, curv_cart):
        self._diff_op      = diff.fd8
        self._diff2_op     = diff.fd28
        self._interp_order = 6

        self._X            = X
        self._Z            = Z
        self._metric_cart  = metric_cart
        self._curv_cart    = curv_cart

        self.Fs = [self._ah_rhs, self._dF_r_fd, self._dF_R_fd]
        self.rhs           = self._RHSFunc(self)

    @property
    def X(self):
        return self._X
    @property
    def Z(self):
        return self._Z
    @property
    def metric_cart(self):
        return self._metric_cart
    @property
    def curv_cart(self):
        return self._curv_cart

    @property
    def metric_u_cart(self):
        if self._metric_u_cart is None:
            self._metric_u_cart = utils.matrix_invert(self.metric_cart)
        return self._metric_u_cart
    @property
    def dmetric_cart(self):
        if self._dmetric_cart is None:
            self._dmetric_cart = curvature._calc_dmetric(self.X, self.Z, self.metric_cart, self._diff_op)
        return self._dmetric_cart
    @property
    def d2metric_cart(self):
        if self._d2metric_cart is None:
            self._d2metric_cart = curvature._calc_d2metric(self.X, self.Z, self.metric_cart,
                                                           self.dmetric_cart, self._diff_op, self._diff2_op)
        return self._d2metric_cart
    @property
    def dmetric_u_cart(self):
        if self._dmetric_u_cart is None:
            self._dmetric_u_cart = -np.einsum('ij...,km...,ljk...->lim...',
                                              self.metric_u_cart, self.metric_u_cart,
                                              self.dmetric_cart)
        return self._dmetric_u_cart
    @property
    def Gamma_cart(self):
        if self._Gamma_cart is None:
            self._Gamma_cart = curvature._calc_christoffel(self.metric_cart, self.metric_u_cart,
                                                           self.dmetric_cart)
        return self._Gamma_cart
    @property
    def dGamma_cart(self):
        if self._dGamma_cart is None:
            self._dGamma_cart = curvature._calc_dchristoffel(self.metric_cart,  self.metric_u_cart,
                                                             self.dmetric_cart, self.dmetric_u_cart,
                                                             self.d2metric_cart)
        return self._dGamma_cart
    @property
    def dcurv_cart(self):
        if self._dcurv_cart is None:
            self._dcurv_cart = curvature._calc_dmetric(self.X, self.Z, self.curv_cart, self._diff_op)
        return self._dcurv_cart

    def _interp_var(self, theta, r, x, z, var):
        origin = (self.Z[0, 0], self.X[0, 0])
        step   = (self.Z[1, 0] - self.Z[0, 0], self.X[0, 1] - self.X[0, 0])
        return interp.interp2d(origin, step, var, (z, x), self._interp_order)

    def _spherical_metric(self, theta, r, x, z):
        metric_cart_dst = np.empty((3, 3) + theta.shape)
        for idx in it.product(range(3), repeat = 2):
            metric_cart_dst[idx] = self._interp_var(theta, r, x, z, self.metric_cart[idx])
        return _tensor_transform_cart_spherical_d2(theta, r, x, z, metric_cart_dst)

    def _spherical_dmetric(self, theta, r, x, z, metric, Gamma):
        # extract the derivatives of the metric from the Christoffel symbols
        Gamma_l = np.einsum('ij...,ikl...->jkl...', metric, Gamma)
        dmetric = np.empty_like(Gamma_l)
        for i, j, k in it.product(range(3), repeat = 3):
            dmetric[i, j, k] = Gamma_l[j, i, k] + Gamma_l[k, i, j]

        return dmetric

    def _spherical_metric_u(self, theta, r, x, z):
        metric_u_cart_dst = np.empty((3, 3) + theta.shape)
        for idx in it.product(range(3), repeat = 2):
            metric_u_cart_dst[idx] = self._interp_var(theta, r, x, z, self.metric_u_cart[idx])
        return _tensor_transform_cart_spherical_u2(theta, r, x, z, metric_u_cart_dst)

    def _spherical_dmetric_u(self, theta, r, x, z, dmetric, metric_u):
        return -np.einsum('ik...,jl...,mkl...->mij...', metric_u, metric_u, dmetric)

    def _spherical_curv(self, theta, r, x, z):
        curv_cart_dst = np.empty((3, 3) + theta.shape)
        for idx in it.product(range(3), repeat = 2):
            curv_cart_dst[idx] = self._interp_var(theta, r, x, z, self.curv_cart[idx])
        return _tensor_transform_cart_spherical_d2(theta, r, x, z, curv_cart_dst)

    def _spherical_dcurv(self, theta, r, x, z):
        curv_cart_dst  = np.empty(   (3, 3) + theta.shape)
        dcurv_cart_dst = np.empty((3, 3, 3) + theta.shape)
        for idx in it.product(range(3), repeat = 2):
            curv_cart_dst[idx] = self._interp_var(theta, r, x, z, self.curv_cart[idx])
        for idx in it.product(range(3), repeat = 3):
            dcurv_cart_dst[idx] = self._interp_var(theta, r, x, z, self.dcurv_cart[idx])
        return _dtensor_transform_cart_spherical_d2(theta, r, x, z, curv_cart_dst, dcurv_cart_dst)

    def _spherical_Gamma(self, theta, r, x, z):
        Gamma_cart_dst = np.empty((3, 3, 3) + theta.shape)
        for idx in it.product(range(3), repeat = 3):
            Gamma_cart_dst[idx] = self._interp_var(theta, r, x, z, self.Gamma_cart[idx])
        return _christoffel_transform_cart_spherical(theta, r, x, z, Gamma_cart_dst)

    def _spherical_dGamma(self, theta, r, x, z):
        Gamma_cart_dst  = np.empty(   (3, 3, 3) + theta.shape)
        dGamma_cart_dst = np.empty((3, 3, 3, 3) + theta.shape)
        for idx in it.product(range(3), repeat = 3):
            Gamma_cart_dst[idx] = self._interp_var(theta, r, x, z, self.Gamma_cart[idx])
        for idx in it.product(range(3), repeat = 4):
            dGamma_cart_dst[idx] = self._interp_var(theta, r, x, z, self.dGamma_cart[idx])

        return _dchristoffel_transform_cart_spherical(theta, r, x, z, Gamma_cart_dst, dGamma_cart_dst)

    def _spherical_trK(self, theta, r, x, z):
        metric_u = np.empty((3, 3) + theta.shape)
        curv     = np.empty((3, 3) + theta.shape)
        for idx in it.product(range(3), repeat = 2):
            metric_u[idx] = self._interp_var(theta, r, x, z, self.metric_u_cart[idx])
            curv[idx]     = self._interp_var(theta, r, x, z, self.curv_cart[idx])

        return np.einsum('ij...,ij...', metric_u, curv)

    def _var_diff(self, x, y, func, idx, eps = 1e-8):
        y_var      = list(y)
        y_var[idx] = y[idx] + eps
        f_plus      = func(x, y_var)

        y_var[idx]  = y[idx] - eps
        f_minus      = func(x, y_var)

        return (f_plus - f_minus) / (2 * eps)

    def _ah_rhs(self, theta, H, val = 0.0):
        r, dr = H

        r2 = r * r
        st = np.sin(theta)
        ct = np.cos(theta)

        x = r * np.sin(theta)
        z = r * np.cos(theta)

        metric   = self._spherical_metric   (theta, r, x, z)
        metric_u = self._spherical_metric_u(theta, r, x, z)
        curv     = self._spherical_curv    (theta, r, x, z)
        Gamma    = self._spherical_Gamma   (theta, r, x, z)
        trK      = self._spherical_trK     (theta, r, x, z)

        dmetric            = self._spherical_dmetric(theta, r, x, z, metric, Gamma)
        dmetric_u          = self._spherical_dmetric_u(theta, r, x, z, dmetric, metric_u)
        metric_u_cart_yy   = self._interp_var(theta, r, x, z, self.metric_u_cart[1, 1])
        dmetric_cart_yy_dz = self._interp_var(theta, r, x, z, self.dmetric_cart[2, 1, 1])

        u2 = metric_u[1, 1] * dr * dr - 2 * metric_u[0, 1] * dr + metric_u[0, 0]
        u  = np.sqrt(u2)
        u3 = u * u2

        du_F    = np.zeros((3,) + u.shape)
        du_F[0] = metric_u[0, 0] - metric_u[0, 1] * dr
        du_F[1] = metric_u[0, 1] - metric_u[1, 1] * dr

        # F_term = (∂^i F)(∂^j F)(Γ_{ij}^k ∂_k F + u K_{ij})
        F_term = np.zeros_like(u)
        for i, j in it.product(range(2), repeat = 2):
            F_term += du_F[i] * du_F[j] * (Gamma[0, i, j] - dr * Gamma[1, i, j] + u * curv[i, j])

        # X_term = γ^{ij} Γ_{ij}^k ∂_k F
        # this is the only term that is singular at θ = nπ
        X_term = np.zeros_like(u)
        for i, j in it.product(range(2), repeat = 2):
            X_term += metric_u[i, j] * (Gamma[0, i, j] - dr * Gamma[1, i, j])

        # γ^{φφ} Γ_{φφ}^r ∂_r F
        X_term_phi_reg_r  = metric_u[2, 2] * Gamma[0, 2, 2]
        X_term_phi_sing_r = -0.5 * (
                metric_u[0, 0] / r * (2. + r *
                    metric_u_cart_yy *  dmetric_cart_yy_dz) +
                dmetric_u[1, 0, 1] * 2
                )
        # γ^{φφ} Γ_{φφ}^θ
        # at the axis this term goes to γ^{θθ} * d2r, i.e. the rhs we are computing;
        # when multiplied by prefactors they all cancel out, so we get:
        #  rhs = <regular part> - rhs
        # in other words, at the axis we need to set X_term_phi_theta to 0 and
        # instead divide rhs by 2
        X_term_phi_reg_theta  = -metric_u[2, 2] * Gamma[1, 2, 2] * dr

        X_term += np.where(theta != 0.0, X_term_phi_reg_r + X_term_phi_reg_theta,
                           X_term_phi_sing_r + 0.0)

        denom = metric_u[0, 0] * metric_u[1, 1] - metric_u[0, 1] * metric_u[0, 1]
        ret   = -(u2 * X_term + u3 * trK - F_term + val * u3) / denom

        ret  *= np.where(theta == 0.0, 0.5, 1.0)

        return ret

    def _dF_r_fd(self, theta, H):
        eps = 1e-8
        r, R = H

        rp = r + eps
        rm = r - eps
        Fp = self._ah_rhs(theta, (rp, R))
        Fm = self._ah_rhs(theta, (rm, R))
        return (Fp - Fm) / (2 * eps)

    def _dF_r_exact(self, theta, H):
        r, dr = H

        x = r * np.sin(theta)
        z = r * np.cos(theta)

        metric    = self._spherical_metric   (theta, r, x, z)
        metric_u  = self._spherical_metric_u (theta, r, x, z)
        curv      = self._spherical_curv     (theta, r, x, z)
        dcurv     = self._spherical_dcurv    (theta, r, x, z)
        Gamma     = self._spherical_Gamma    (theta, r, x, z)
        dmetric   = self._spherical_dmetric  (theta, r, x, z, metric, Gamma)
        dmetric_u = self._spherical_dmetric_u(theta, r, x, z, dmetric, metric_u)
        dGamma    = self._spherical_dGamma   (theta, r, x, z)

        u2     = metric_u[1, 1] * dr * dr - 2 * metric_u[0, 1] * dr + metric_u[0, 0]
        u      = np.sqrt(u2)
        var_u2 = dmetric_u[0, 1, 1] * dr * dr - 2 * dmetric_u[0, 0, 1] * dr + dmetric_u[0, 0, 0]
        var_u  = var_u2 / (2 * u)

        df_ij     = np.empty_like(metric_u)
        var_df_ij = np.empty_like(metric_u)
        for i, j in it.product(range(3), repeat = 2):
            df_ij[i, j]     =  ( metric_u   [0, i] -  metric_u   [1, i] * dr) * (metric_u[0, j] - metric_u[1, j] * dr)
            var_df_ij[i, j] = ((dmetric_u[0, 0, i] - dmetric_u[0, 1, i] * dr) * (metric_u[0, j] - metric_u[1, j] * dr) +
                               (dmetric_u[0, 0, j] - dmetric_u[0, 1, j] * dr) * (metric_u[0, i] - metric_u[1, i] * dr))

        term1     = u2 * metric_u                         - df_ij
        var_term1 = var_u2 * metric_u + u2 * dmetric_u[0] - var_df_ij
        term2     = Gamma[0] - dr * Gamma[1] + u * curv
        var_term2 = dGamma[0, 0] - dr * dGamma[0, 1] + dcurv[0] * u + curv * var_u

        denom     =  metric_u   [0, 0] * metric_u[1, 1]                                       -      metric_u   [0, 1] * metric_u[0, 1]
        var_denom = dmetric_u[0, 0, 0] * metric_u[1, 1] + metric_u[0, 0] * dmetric_u[0, 1, 1] - 2 * dmetric_u[0, 0, 1] * metric_u[0, 1]

        ret = -(np.einsum('ij...,ij...', var_term1, term2) + np.einsum('ij...,ij...', term1, var_term2) - np.einsum('ij...,ij...', term1, term2) * var_denom / denom) / denom
        return ret

    def _dF_R_fd(self, theta, H):
        eps = 1e-8
        r, R = H

        Rp = R + eps
        Rm = R - eps
        Fp = self._ah_rhs(theta, (r, Rp))
        Fm = self._ah_rhs(theta, (r, Rm))
        return (Fp - Fm) / (2 * eps)

    def _dF_R_exact(self, theta, H):
        r, dr = H

        x = r * np.sin(theta)
        z = r * np.cos(theta)

        metric_u = self._spherical_metric_u(theta, r, x, z)
        curv     = self._spherical_curv    (theta, r, x, z)
        Gamma    = self._spherical_Gamma   (theta, r, x, z)

        u2     = metric_u[1, 1] * dr * dr - 2 * metric_u[0, 1] * dr + metric_u[0, 0]
        u      = np.sqrt(u2)
        var_u2 = metric_u[1, 1] * dr * 2  - 2 * metric_u[0, 1]
        var_u  = var_u2 / (2 * u)

        df_ij     = np.empty_like(metric_u)
        var_df_ij = np.empty_like(metric_u)

        for i, j in it.product(range(3), repeat = 2):
            df_ij[i, j]     = (metric_u[0, i] - metric_u[1, i] * dr) * (metric_u[0, j] - metric_u[1, j] * dr)
            var_df_ij[i, j] = -metric_u[1, i] * (metric_u[0, j] - metric_u[1, j] * dr) - metric_u[1, j] * (metric_u[0, i] - metric_u[1, i] * dr)

        term1     = u2 * metric_u - df_ij
        var_term1 = var_u2 * metric_u - var_df_ij
        term2     = Gamma[0] - dr * Gamma[1] + u * curv
        var_term2 = -Gamma[1] + curv * var_u

        ret = -(np.einsum('ij...,ij...', var_term1, term2) + np.einsum('ij...,ij...', term1, var_term2)) / (metric_u[0, 0] * metric_u[1, 1] - metric_u[0, 1] * metric_u[0, 1])
        return ret

    def hor_area(self, hor, log2points = 10):
        theta = np.linspace(0, np.pi, (1 << log2points) + 1)
        r     = hor.eval(theta)
        dr    = hor.eval(theta, 1)

        st    = np.sin(theta)
        ct    = np.cos(theta)

        x     = r * st
        z     = r * ct

        r2    = r * r
        z2    = z * z

        metric_u = np.empty((3, 3) + theta.shape)
        for i, j in it.product(range(3), repeat = 2):
            metric_u[i, j] = self._interp_var(theta, r, x, z, self.metric_u_cart[i, j])

        metric_u_det = utils.matrix_det(metric_u)

        ds = np.empty((3,) + theta.shape)
        ds[0] = x / r - dr * x * z / (r2 * np.sqrt(r2 - z2))
        ds[1] = 0.0
        ds[2] = z / r + dr * np.sqrt(r2 - z2) / r2
        lm2 = np.einsum('ij...,i...,j...', metric_u, ds, ds)

        dA = np.sqrt(lm2 / metric_u_det) * r2 * st
        dA[0]  = 0.0
        dA[-1] = 0.0

        return scipy.integrate.romb(dA, theta[1] - theta[0]) * 2. * np.pi

    def hor_mass(self, hor, *args, **kwargs):
        A = self.hor_area(hor, *args, **kwargs)
        return np.sqrt(A / (16. * np.pi))

    def calc_expansion(self, surf, direction):
        """
        Calculate expansion of null geodesics on a sequence of surfaces [1]. The
        surfaces are specified as level surfaces of F(r, θ) = r - h(θ).

        [1] Alcubierre (2008): Introduction to 3+1 Numerical Relativity, chapter
            6.7, specifically equation (6.7.13).

        :param callable surf: A callable that specifies the surfaces. Accepts an
                              array of θ and returns the array of correponding h.
        :param int direction: Values of 1/-1 specify that the expansion of outgoing
                              or ingoing geodesics is to be computed.
        :rtype: array_like, shape (self.Z.shape[0], self.X.shape[0])
        :return: Expansion values at the grid formed from X and Z.
        """
        X, Z = self.X, self.Z
        dX = [X[0, 1] - X[0, 0], 0, Z[1, 0] - Z[0, 0]]

        R     = np.sqrt(X ** 2 + Z ** 2)
        Theta = np.where(R > 1e-12, np.arccos(Z / R), 0.0)

        trK = np.einsum('ij...,ij...', self.metric_u_cart, self.curv_cart)

        F = R[:]
        for i in range(Theta.shape[0]):
            F[i] -= surf.eval(Theta[i])

        dF = np.empty((3,) + F.shape)
        dF[0] = self._diff_op(F, 1, dX[0])
        dF[1] = 0.0
        dF[2] = self._diff_op(F, 0, dX[2])

        s_l  = direction * dF[:]
        s_u  = np.einsum('ij...,j...->i...', self.metric_u_cart, s_l)
        s_u /= np.sqrt(np.einsum('ij...,i...,j...', self.metric_cart, s_u, s_u))

        ds_u = np.zeros((3,) + s_u.shape)
        for i in range(3):
            for j in range(3):
                if i == 1 or j == 1:
                    continue
                diff_dir = 1 if (i == 0) else 0
                ds_u[i, j] = self._diff_op(s_u[j], diff_dir, dX[i])
        ds_u[1, 1] = np.where(np.abs(X) > 1e-8, s_u[0] / X, ds_u[0, 0])

        Div_s_u = np.einsum('ii...', ds_u) + np.einsum('iki...,k...', self.Gamma_cart, s_u)

        H = Div_s_u - trK + np.einsum('ij...,i...,j...', self.curv_cart, s_u, s_u)

        return H