summaryrefslogtreecommitdiff
path: root/libavutil/tx.c
blob: fa81ada2f192c131688b16e8232c04ad458c96e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "tx_priv.h"

int ff_tx_type_is_mdct(enum AVTXType type)
{
    switch (type) {
    case AV_TX_FLOAT_MDCT:
    case AV_TX_DOUBLE_MDCT:
    case AV_TX_INT32_MDCT:
        return 1;
    default:
        return 0;
    }
}

/* Calculates the modular multiplicative inverse */
static av_always_inline int mulinv(int n, int m)
{
    n = n % m;
    for (int x = 1; x < m; x++)
        if (((n * x) % m) == 1)
            return x;
    av_assert0(0); /* Never reached */
    return 0;
}

/* Guaranteed to work for any n, m where gcd(n, m) == 1 */
int ff_tx_gen_compound_mapping(AVTXContext *s)
{
    int *in_map, *out_map;
    const int n     = s->n;
    const int m     = s->m;
    const int inv   = s->inv;
    const int len   = n*m;
    const int m_inv = mulinv(m, n);
    const int n_inv = mulinv(n, m);
    const int mdct  = ff_tx_type_is_mdct(s->type);

    if (!(s->pfatab = av_malloc(2*len*sizeof(*s->pfatab))))
        return AVERROR(ENOMEM);

    in_map  = s->pfatab;
    out_map = s->pfatab + n*m;

    /* Ruritanian map for input, CRT map for output, can be swapped */
    for (int j = 0; j < m; j++) {
        for (int i = 0; i < n; i++) {
            /* Shifted by 1 to simplify MDCTs */
            in_map[j*n + i] = ((i*m + j*n) % len) << mdct;
            out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j;
        }
    }

    /* Change transform direction by reversing all ACs */
    if (inv) {
        for (int i = 0; i < m; i++) {
            int *in = &in_map[i*n + 1]; /* Skip the DC */
            for (int j = 0; j < ((n - 1) >> 1); j++)
                FFSWAP(int, in[j], in[n - j - 2]);
        }
    }

    /* Our 15-point transform is also a compound one, so embed its input map */
    if (n == 15) {
        for (int k = 0; k < m; k++) {
            int tmp[15];
            memcpy(tmp, &in_map[k*15], 15*sizeof(*tmp));
            for (int i = 0; i < 5; i++) {
                for (int j = 0; j < 3; j++)
                    in_map[k*15 + i*3 + j] = tmp[(i*3 + j*5) % 15];
            }
        }
    }

    return 0;
}

static inline int split_radix_permutation(int i, int m, int inverse)
{
    m >>= 1;
    if (m <= 1)
        return i & 1;
    if (!(i & m))
        return split_radix_permutation(i, m, inverse) * 2;
    m >>= 1;
    return split_radix_permutation(i, m, inverse) * 4 + 1 - 2*(!(i & m) ^ inverse);
}

int ff_tx_gen_ptwo_revtab(AVTXContext *s, int invert_lookup)
{
    const int m = s->m, inv = s->inv;

    if (!(s->revtab = av_malloc(s->m*sizeof(*s->revtab))))
        return AVERROR(ENOMEM);
    if (!(s->revtab_c = av_malloc(m*sizeof(*s->revtab_c))))
        return AVERROR(ENOMEM);

    /* Default */
    for (int i = 0; i < m; i++) {
        int k = -split_radix_permutation(i, m, inv) & (m - 1);
        if (invert_lookup)
            s->revtab[i] = s->revtab_c[i] = k;
        else
            s->revtab[i] = s->revtab_c[k] = i;
    }

    return 0;
}

int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s, int *revtab)
{
    int nb_inplace_idx = 0;

    if (!(s->inplace_idx = av_malloc(s->m*sizeof(*s->inplace_idx))))
        return AVERROR(ENOMEM);

    /* The first coefficient is always already in-place */
    for (int src = 1; src < s->m; src++) {
        int dst = revtab[src];
        int found = 0;

        if (dst <= src)
            continue;

        /* This just checks if a closed loop has been encountered before,
         * and if so, skips it, since to fully permute a loop we must only
         * enter it once. */
        do {
            for (int j = 0; j < nb_inplace_idx; j++) {
                if (dst == s->inplace_idx[j]) {
                    found = 1;
                    break;
                }
            }
            dst = revtab[dst];
        } while (dst != src && !found);

        if (!found)
            s->inplace_idx[nb_inplace_idx++] = src;
    }

    s->inplace_idx[nb_inplace_idx++] = 0;

    return 0;
}

static void parity_revtab_generator(int *revtab, int n, int inv, int offset,
                                    int is_dual, int dual_high, int len,
                                    int basis, int dual_stride)
{
    len >>= 1;

    if (len <= basis) {
        int k1, k2, *even, *odd, stride;

        is_dual = is_dual && dual_stride;
        dual_high = is_dual & dual_high;
        stride = is_dual ? FFMIN(dual_stride, len) : 0;

        even = &revtab[offset + dual_high*(stride - 2*len)];
        odd  = &even[len + (is_dual && !dual_high)*len + dual_high*len];

        for (int i = 0; i < len; i++) {
            k1 = -split_radix_permutation(offset + i*2 + 0, n, inv) & (n - 1);
            k2 = -split_radix_permutation(offset + i*2 + 1, n, inv) & (n - 1);
            *even++ = k1;
            *odd++  = k2;
            if (stride && !((i + 1) % stride)) {
                even += stride;
                odd  += stride;
            }
        }

        return;
    }

    parity_revtab_generator(revtab, n, inv, offset,
                            0, 0, len >> 0, basis, dual_stride);
    parity_revtab_generator(revtab, n, inv, offset + (len >> 0),
                            1, 0, len >> 1, basis, dual_stride);
    parity_revtab_generator(revtab, n, inv, offset + (len >> 0) + (len >> 1),
                            1, 1, len >> 1, basis, dual_stride);
}

void ff_tx_gen_split_radix_parity_revtab(int *revtab, int len, int inv,
                                         int basis, int dual_stride)
{
    basis >>= 1;
    if (len < basis)
        return;
    av_assert0(!dual_stride || !(dual_stride & (dual_stride - 1)));
    av_assert0(dual_stride <= basis);
    parity_revtab_generator(revtab, len, inv, 0, 0, 0, len, basis, dual_stride);
}

av_cold void av_tx_uninit(AVTXContext **ctx)
{
    if (!(*ctx))
        return;

    av_free((*ctx)->pfatab);
    av_free((*ctx)->exptab);
    av_free((*ctx)->revtab);
    av_free((*ctx)->revtab_c);
    av_free((*ctx)->inplace_idx);
    av_free((*ctx)->tmp);

    av_freep(ctx);
}

av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type,
                       int inv, int len, const void *scale, uint64_t flags)
{
    int err;
    AVTXContext *s = av_mallocz(sizeof(*s));
    if (!s)
        return AVERROR(ENOMEM);

    switch (type) {
    case AV_TX_FLOAT_FFT:
    case AV_TX_FLOAT_MDCT:
        if ((err = ff_tx_init_mdct_fft_float(s, tx, type, inv, len, scale, flags)))
            goto fail;
        if (ARCH_X86)
            ff_tx_init_float_x86(s, tx);
        break;
    case AV_TX_DOUBLE_FFT:
    case AV_TX_DOUBLE_MDCT:
        if ((err = ff_tx_init_mdct_fft_double(s, tx, type, inv, len, scale, flags)))
            goto fail;
        break;
    case AV_TX_INT32_FFT:
    case AV_TX_INT32_MDCT:
        if ((err = ff_tx_init_mdct_fft_int32(s, tx, type, inv, len, scale, flags)))
            goto fail;
        break;
    default:
        err = AVERROR(EINVAL);
        goto fail;
    }

    *ctx = s;

    return 0;

fail:
    av_tx_uninit(&s);
    *tx = NULL;
    return err;
}