summaryrefslogtreecommitdiff
path: root/libavcodec/eac3dec.c
blob: f57c1cc617a3d8b5b498799f9febddaae3585857 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*
 * E-AC-3 decoder
 * Copyright (c) 2007 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
 * Copyright (c) 2008 Justin Ruggles
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "avcodec.h"
#include "internal.h"
#include "aac_ac3_parser.h"
#include "ac3.h"
#include "ac3_parser.h"
#include "ac3dec.h"
#include "ac3dec_data.h"

/** gain adaptive quantization mode */
typedef enum {
    EAC3_GAQ_NO =0,
    EAC3_GAQ_12,
    EAC3_GAQ_14,
    EAC3_GAQ_124
} EAC3GaqMode;

#define EAC3_SR_CODE_REDUCED  3

/** lrint(M_SQRT2*cos(2*M_PI/12)*(1<<23)) */
#define COEFF_0 10273905LL

/** lrint(M_SQRT2*cos(0*M_PI/12)*(1<<23)) = lrint(M_SQRT2*(1<<23)) */
#define COEFF_1 11863283LL

/** lrint(M_SQRT2*cos(5*M_PI/12)*(1<<23)) */
#define COEFF_2  3070444LL

/**
 * Calculate 6-point IDCT of the pre-mantissas.
 * All calculations are 24-bit fixed-point.
 */
static void idct6(int pre_mant[6])
{
    int tmp;
    int even0, even1, even2, odd0, odd1, odd2;

    odd1 = pre_mant[1] - pre_mant[3] - pre_mant[5];

    even2 = ( pre_mant[2]                * COEFF_0) >> 23;
    tmp   = ( pre_mant[4]                * COEFF_1) >> 23;
    odd0  = ((pre_mant[1] + pre_mant[5]) * COEFF_2) >> 23;

    even0 = pre_mant[0] + (tmp >> 1);
    even1 = pre_mant[0] - tmp;

    tmp = even0;
    even0 = tmp + even2;
    even2 = tmp - even2;

    tmp = odd0;
    odd0 = tmp + pre_mant[1] + pre_mant[3];
    odd2 = tmp + pre_mant[5] - pre_mant[3];

    pre_mant[0] = even0 + odd0;
    pre_mant[1] = even1 + odd1;
    pre_mant[2] = even2 + odd2;
    pre_mant[3] = even2 - odd2;
    pre_mant[4] = even1 - odd1;
    pre_mant[5] = even0 - odd0;
}

void ff_eac3_decode_transform_coeffs_aht_ch(AC3DecodeContext *s, int ch)
{
    int bin, blk, gs;
    int end_bap, gaq_mode;
    GetBitContext *gbc = &s->gbc;
    int gaq_gain[AC3_MAX_COEFS];

    gaq_mode = get_bits(gbc, 2);
    end_bap = (gaq_mode < 2) ? 12 : 17;

    /* if GAQ gain is used, decode gain codes for bins with hebap between
       8 and end_bap */
    gs = 0;
    if (gaq_mode == EAC3_GAQ_12 || gaq_mode == EAC3_GAQ_14) {
        /* read 1-bit GAQ gain codes */
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < end_bap)
                gaq_gain[gs++] = get_bits1(gbc) << (gaq_mode-1);
        }
    } else if (gaq_mode == EAC3_GAQ_124) {
        /* read 1.67-bit GAQ gain codes (3 codes in 5 bits) */
        int gc = 2;
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < 17) {
                if (gc++ == 2) {
                    int group_code = get_bits(gbc, 5);
                    if (group_code > 26) {
                        av_log(s->avctx, AV_LOG_WARNING, "GAQ gain group code out-of-range\n");
                        group_code = 26;
                    }
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][0];
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][1];
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][2];
                    gc = 0;
                }
            }
        }
    }

    gs=0;
    for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
        int hebap = s->bap[ch][bin];
        int bits = ff_eac3_bits_vs_hebap[hebap];
        if (!hebap) {
            /* zero-mantissa dithering */
            for (blk = 0; blk < 6; blk++) {
                s->pre_mantissa[ch][bin][blk] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
            }
        } else if (hebap < 8) {
            /* Vector Quantization */
            int v = get_bits(gbc, bits);
            for (blk = 0; blk < 6; blk++) {
                s->pre_mantissa[ch][bin][blk] = ff_eac3_mantissa_vq[hebap][v][blk] << 8;
            }
        } else {
            /* Gain Adaptive Quantization */
            int gbits, log_gain;
            if (gaq_mode != EAC3_GAQ_NO && hebap < end_bap) {
                log_gain = gaq_gain[gs++];
            } else {
                log_gain = 0;
            }
            gbits = bits - log_gain;

            for (blk = 0; blk < 6; blk++) {
                int mant = get_sbits(gbc, gbits);
                if (mant == -(1 << (gbits-1))) {
                    /* large mantissa */
                    int b;
                    mant = get_sbits(gbc, bits-2+log_gain) << (26-log_gain-bits);
                    /* remap mantissa value to correct for asymmetric quantization */
                    if (mant >= 0)
                        b = 32768 >> (log_gain+8);
                    else
                        b = ff_eac3_gaq_remap_2_4_b[hebap-8][log_gain-1];
                    mant += (ff_eac3_gaq_remap_2_4_a[hebap-8][log_gain-1] * (mant>>8) + b) >> 7;
                } else {
                    /* small mantissa, no GAQ, or Gk=1 */
                    mant <<= 24 - bits;
                    if (!log_gain) {
                        /* remap mantissa value for no GAQ or Gk=1 */
                        mant += (ff_eac3_gaq_remap_1[hebap-8] * (mant>>8)) >> 7;
                    }
                }
                s->pre_mantissa[ch][bin][blk] = mant;
            }
        }
        idct6(s->pre_mantissa[ch][bin]);
    }
}

int ff_eac3_parse_header(AC3DecodeContext *s)
{
    int i, blk, ch;
    int ac3_exponent_strategy, parse_aht_info, parse_spx_atten_data;
    int parse_transient_proc_info;
    int num_cpl_blocks;
    GetBitContext *gbc = &s->gbc;

    /* An E-AC-3 stream can have multiple independent streams which the
       application can select from. each independent stream can also contain
       dependent streams which are used to add or replace channels. */
    if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
        ff_log_missing_feature(s->avctx, "Dependent substream decoding", 1);
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
    } else if (s->frame_type == EAC3_FRAME_TYPE_RESERVED) {
        av_log(s->avctx, AV_LOG_ERROR, "Reserved frame type\n");
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
    }

    /* The substream id indicates which substream this frame belongs to. each
       independent stream has its own substream id, and the dependent streams
       associated to an independent stream have matching substream id's. */
    if (s->substreamid) {
        /* only decode substream with id=0. skip any additional substreams. */
        ff_log_missing_feature(s->avctx, "Additional substreams", 1);
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
    }

    if (s->bit_alloc_params.sr_code == EAC3_SR_CODE_REDUCED) {
        /* The E-AC-3 specification does not tell how to handle reduced sample
           rates in bit allocation.  The best assumption would be that it is
           handled like AC-3 DolbyNet, but we cannot be sure until we have a
           sample which utilizes this feature. */
        ff_log_missing_feature(s->avctx, "Reduced sampling rates", 1);
        return -1;
    }
    skip_bits(gbc, 5); // skip bitstream id

    /* volume control params */
    for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
        skip_bits(gbc, 5); // skip dialog normalization
        if (get_bits1(gbc)) {
            skip_bits(gbc, 8); // skip compression gain word
        }
    }

    /* dependent stream channel map */
    if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
        if (get_bits1(gbc)) {
            skip_bits(gbc, 16); // skip custom channel map
        }
    }

    /* mixing metadata */
    if (get_bits1(gbc)) {
        /* center and surround mix levels */
        if (s->channel_mode > AC3_CHMODE_STEREO) {
            skip_bits(gbc, 2);  // skip preferred stereo downmix mode
            if (s->channel_mode & 1) {
                /* if three front channels exist */
                skip_bits(gbc, 3); //skip Lt/Rt center mix level
                s->center_mix_level = get_bits(gbc, 3);
            }
            if (s->channel_mode & 4) {
                /* if a surround channel exists */
                skip_bits(gbc, 3); //skip Lt/Rt surround mix level
                s->surround_mix_level = get_bits(gbc, 3);
            }
        }

        /* lfe mix level */
        if (s->lfe_on && get_bits1(gbc)) {
            // TODO: use LFE mix level
            skip_bits(gbc, 5); // skip LFE mix level code
        }

        /* info for mixing with other streams and substreams */
        if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT) {
            for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
                // TODO: apply program scale factor
                if (get_bits1(gbc)) {
                    skip_bits(gbc, 6);  // skip program scale factor
                }
            }
            if (get_bits1(gbc)) {
                skip_bits(gbc, 6);  // skip external program scale factor
            }
            /* skip mixing parameter data */
            switch(get_bits(gbc, 2)) {
                case 1: skip_bits(gbc, 5);  break;
                case 2: skip_bits(gbc, 12); break;
                case 3: {
                    int mix_data_size = (get_bits(gbc, 5) + 2) << 3;
                    skip_bits_long(gbc, mix_data_size);
                    break;
                }
            }
            /* skip pan information for mono or dual mono source */
            if (s->channel_mode < AC3_CHMODE_STEREO) {
                for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
                    if (get_bits1(gbc)) {
                        /* note: this is not in the ATSC A/52B specification
                           reference: ETSI TS 102 366 V1.1.1
                                      section: E.1.3.1.25 */
                        skip_bits(gbc, 8);  // skip pan mean direction index
                        skip_bits(gbc, 6);  // skip reserved paninfo bits
                    }
                }
            }
            /* skip mixing configuration information */
            if (get_bits1(gbc)) {
                for (blk = 0; blk < s->num_blocks; blk++) {
                    if (s->num_blocks == 1 || get_bits1(gbc)) {
                        skip_bits(gbc, 5);
                    }
                }
            }
        }
    }

    /* informational metadata */
    if (get_bits1(gbc)) {
        skip_bits(gbc, 3); // skip bit stream mode
        skip_bits(gbc, 2); // skip copyright bit and original bitstream bit
        if (s->channel_mode == AC3_CHMODE_STEREO) {
            skip_bits(gbc, 4); // skip Dolby surround and headphone mode
        }
        if (s->channel_mode >= AC3_CHMODE_2F2R) {
            skip_bits(gbc, 2); // skip Dolby surround EX mode
        }
        for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
            if (get_bits1(gbc)) {
                skip_bits(gbc, 8); // skip mix level, room type, and A/D converter type
            }
        }
        if (s->bit_alloc_params.sr_code != EAC3_SR_CODE_REDUCED) {
            skip_bits1(gbc); // skip source sample rate code
        }
    }

    /* converter synchronization flag
       If frames are less than six blocks, this bit should be turned on
       once every 6 blocks to indicate the start of a frame set.
       reference: RFC 4598, Section 2.1.3  Frame Sets */
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && s->num_blocks != 6) {
        skip_bits1(gbc); // skip converter synchronization flag
    }

    /* original frame size code if this stream was converted from AC-3 */
    if (s->frame_type == EAC3_FRAME_TYPE_AC3_CONVERT &&
            (s->num_blocks == 6 || get_bits1(gbc))) {
        skip_bits(gbc, 6); // skip frame size code
    }

    /* additional bitstream info */
    if (get_bits1(gbc)) {
        int addbsil = get_bits(gbc, 6);
        for (i = 0; i < addbsil + 1; i++) {
            skip_bits(gbc, 8); // skip additional bit stream info
        }
    }

    /* audio frame syntax flags, strategy data, and per-frame data */

    if (s->num_blocks == 6) {
        ac3_exponent_strategy = get_bits1(gbc);
        parse_aht_info        = get_bits1(gbc);
    } else {
        /* less than 6 blocks, so use AC-3-style exponent strategy syntax, and
           do not use AHT */
        ac3_exponent_strategy = 1;
        parse_aht_info = 0;
    }

    s->snr_offset_strategy    = get_bits(gbc, 2);
    parse_transient_proc_info = get_bits1(gbc);

    s->block_switch_syntax = get_bits1(gbc);
    if (!s->block_switch_syntax)
        memset(s->block_switch, 0, sizeof(s->block_switch));

    s->dither_flag_syntax = get_bits1(gbc);
    if (!s->dither_flag_syntax) {
        for (ch = 1; ch <= s->fbw_channels; ch++)
            s->dither_flag[ch] = 1;
    }
    s->dither_flag[CPL_CH] = s->dither_flag[s->lfe_ch] = 0;

    s->bit_allocation_syntax = get_bits1(gbc);
    if (!s->bit_allocation_syntax) {
        /* set default bit allocation parameters */
        s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[2];
        s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[1];
        s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab [1];
        s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[2];
        s->bit_alloc_params.floor      = ff_ac3_floor_tab     [7];
    }

    s->fast_gain_syntax  = get_bits1(gbc);
    s->dba_syntax        = get_bits1(gbc);
    s->skip_syntax       = get_bits1(gbc);
    parse_spx_atten_data = get_bits1(gbc);

    /* coupling strategy occurance and coupling use per block */
    num_cpl_blocks = 0;
    if (s->channel_mode > 1) {
        for (blk = 0; blk < s->num_blocks; blk++) {
            s->cpl_strategy_exists[blk] = (!blk || get_bits1(gbc));
            if (s->cpl_strategy_exists[blk]) {
                s->cpl_in_use[blk] = get_bits1(gbc);
            } else {
                s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
            }
            num_cpl_blocks += s->cpl_in_use[blk];
        }
    } else {
        memset(s->cpl_in_use, 0, sizeof(s->cpl_in_use));
    }

    /* exponent strategy data */
    if (ac3_exponent_strategy) {
        /* AC-3-style exponent strategy syntax */
        for (blk = 0; blk < s->num_blocks; blk++) {
            for (ch = !s->cpl_in_use[blk]; ch <= s->fbw_channels; ch++) {
                s->exp_strategy[blk][ch] = get_bits(gbc, 2);
            }
        }
    } else {
        /* LUT-based exponent strategy syntax */
        for (ch = !((s->channel_mode > 1) && num_cpl_blocks); ch <= s->fbw_channels; ch++) {
            int frmchexpstr = get_bits(gbc, 5);
            for (blk = 0; blk < 6; blk++) {
                s->exp_strategy[blk][ch] = ff_eac3_frm_expstr[frmchexpstr][blk];
            }
        }
    }
    /* LFE exponent strategy */
    if (s->lfe_on) {
        for (blk = 0; blk < s->num_blocks; blk++) {
            s->exp_strategy[blk][s->lfe_ch] = get_bits1(gbc);
        }
    }
    /* original exponent strategies if this stream was converted from AC-3 */
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT &&
            (s->num_blocks == 6 || get_bits1(gbc))) {
        skip_bits(gbc, 5 * s->fbw_channels); // skip converter channel exponent strategy
    }

    /* determine which channels use AHT */
    if (parse_aht_info) {
        /* For AHT to be used, all non-zero blocks must reuse exponents from
           the first block.  Furthermore, for AHT to be used in the coupling
           channel, all blocks must use coupling and use the same coupling
           strategy. */
        s->channel_uses_aht[CPL_CH]=0;
        for (ch = (num_cpl_blocks != 6); ch <= s->channels; ch++) {
            int use_aht = 1;
            for (blk = 1; blk < 6; blk++) {
                if ((s->exp_strategy[blk][ch] != EXP_REUSE) ||
                        (!ch && s->cpl_strategy_exists[blk])) {
                    use_aht = 0;
                    break;
                }
            }
            s->channel_uses_aht[ch] = use_aht && get_bits1(gbc);
        }
    } else {
        memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
    }

    /* per-frame SNR offset */
    if (!s->snr_offset_strategy) {
        int csnroffst = (get_bits(gbc, 6) - 15) << 4;
        int snroffst = (csnroffst + get_bits(gbc, 4)) << 2;
        for (ch = 0; ch <= s->channels; ch++)
            s->snr_offset[ch] = snroffst;
    }

    /* transient pre-noise processing data */
    if (parse_transient_proc_info) {
        for (ch = 1; ch <= s->fbw_channels; ch++) {
            if (get_bits1(gbc)) { // channel in transient processing
                skip_bits(gbc, 10); // skip transient processing location
                skip_bits(gbc, 8);  // skip transient processing length
            }
        }
    }

    /* spectral extension attenuation data */
    if (parse_spx_atten_data) {
        ff_log_missing_feature(s->avctx, "Spectral extension attenuation", 1);
        for (ch = 1; ch <= s->fbw_channels; ch++) {
            if (get_bits1(gbc)) { // channel has spx attenuation
                skip_bits(gbc, 5); // skip spx attenuation code
            }
        }
    }

    /* block start information */
    if (s->num_blocks > 1 && get_bits1(gbc)) {
        /* reference: Section E2.3.2.27
           nblkstrtbits = (numblks - 1) * (4 + ceiling(log2(words_per_frame)))
           The spec does not say what this data is or what it's used for.
           It is likely the offset of each block within the frame. */
        int block_start_bits = (s->num_blocks-1) * (4 + av_log2(s->frame_size-2));
        skip_bits_long(gbc, block_start_bits);
        ff_log_missing_feature(s->avctx, "Block start info", 1);
    }

    /* syntax state initialization */
    for (ch = 1; ch <= s->fbw_channels; ch++) {
        s->first_cpl_coords[ch] = 1;
    }
    s->first_cpl_leak = 1;

    return 0;
}