summaryrefslogtreecommitdiff
path: root/libavcodec/acelp_vectors.h
blob: d6226bf020932c933a5a766d08ef3f3b88850df4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
 * adaptive and fixed codebook vector operations for ACELP-based codecs
 *
 * Copyright (c) 2008 Vladimir Voroshilov
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#ifndef AVCODEC_ACELP_VECTORS_H
#define AVCODEC_ACELP_VECTORS_H

#include <stdint.h>

/** Sparse representation for the algebraic codebook (fixed) vector */
typedef struct AMRFixed {
    int      n;
    int      x[10];
    float    y[10];
    int      no_repeat_mask;
    int      pitch_lag;
    float    pitch_fac;
} AMRFixed;

/**
 * Track|Pulse|        Positions
 * -------------------------------------------------------------------------
 *  1   | 0   | 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75
 * -------------------------------------------------------------------------
 *  2   | 1   | 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76
 * -------------------------------------------------------------------------
 *  3   | 2   | 2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77
 * -------------------------------------------------------------------------
 *
 * Table contains only first the pulse indexes.
 *
 * Used in G.729 @@8k, G.729 @@4.4k, AMR @@7.95k, AMR @@7.40k
 */
extern const uint8_t ff_fc_4pulses_8bits_tracks_13[16];

/**
 * Track|Pulse|        Positions
 * -------------------------------------------------------------------------
 *  4   | 3   | 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78
 *      |     | 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79
 * -------------------------------------------------------------------------
 *
 * @remark Track in the table should be read top-to-bottom, left-to-right.
 *
 * Used in G.729 @@8k, G.729 @@4.4k, AMR @@7.95k, AMR @@7.40k
 */
extern const uint8_t ff_fc_4pulses_8bits_track_4[32];

/**
 * Track|Pulse|        Positions
 * -----------------------------------------
 *  1   | 0   | 1, 6, 11, 16, 21, 26, 31, 36
 *      |     | 3, 8, 13, 18, 23, 28, 33, 38
 * -----------------------------------------
 *
 * @remark Track in the table should be read top-to-bottom, left-to-right.
 *
 * @note (EE) Reference G.729D code also uses gray decoding for each
 *            pulse index before looking up the value in the table.
 *
 * Used in G.729 @@6.4k (with gray coding), AMR @@5.9k (without gray coding)
 */
extern const uint8_t ff_fc_2pulses_9bits_track1[16];
extern const uint8_t ff_fc_2pulses_9bits_track1_gray[16];

/**
 * b60 hamming windowed sinc function coefficients
 */
extern const float ff_b60_sinc[61];

/**
 * Table of pow(0.7,n)
 */
extern const float ff_pow_0_7[10];

/**
 * Table of pow(0.75,n)
 */
extern const float ff_pow_0_75[10];

/**
 * Table of pow(0.55,n)
 */
extern const float ff_pow_0_55[10];

/**
 * Decode fixed-codebook vector (3.8 and D.5.8 of G.729, 5.7.1 of AMR).
 * @param[out] fc_v decoded fixed codebook vector (2.13)
 * @param tab1 table used for first pulse_count pulses
 * @param tab2 table used for last pulse
 * @param pulse_indexes fixed codebook indexes
 * @param pulse_signs signs of the excitation pulses (0 bit value
 *                     means negative sign)
 * @param bits number of bits per one pulse index
 * @param pulse_count number of pulses decoded using first table
 * @param bits length of one pulse index in bits
 *
 * Used in G.729 @@8k, G.729 @@4.4k, G.729 @@6.4k, AMR @@7.95k, AMR @@7.40k
 */
void ff_acelp_fc_pulse_per_track(int16_t* fc_v,
                                 const uint8_t *tab1,
                                 const uint8_t *tab2,
                                 int pulse_indexes,
                                 int pulse_signs,
                                 int pulse_count,
                                 int bits);

/**
 * Decode the algebraic codebook index to pulse positions and signs and
 * construct the algebraic codebook vector for MODE_12k2.
 *
 * @note: The positions and signs are explicitly coded in MODE_12k2.
 *
 * @param fixed_index          positions of the ten pulses
 * @param fixed_sparse         pointer to the algebraic codebook vector
 * @param gray_decode          gray decoding table
 * @param half_pulse_count     number of couples of pulses
 * @param bits                 length of one pulse index in bits
 */
void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
                                AMRFixed *fixed_sparse,
                                const uint8_t *gray_decode,
                                int half_pulse_count, int bits);


/**
 * weighted sum of two vectors with rounding.
 * @param[out] out result of addition
 * @param in_a first vector
 * @param in_b second vector
 * @param weight_coeff_a first vector weight coefficient
 * @param weight_coeff_a second vector weight coefficient
 * @param rounder this value will be added to the sum of the two vectors
 * @param shift result will be shifted to right by this value
 * @param length vectors length
 *
 * @note It is safe to pass the same buffer for out and in_a or in_b.
 *
 *  out[i] = (in_a[i]*weight_a + in_b[i]*weight_b + rounder) >> shift
 */
void ff_acelp_weighted_vector_sum(int16_t* out,
                                  const int16_t *in_a,
                                  const int16_t *in_b,
                                  int16_t weight_coeff_a,
                                  int16_t weight_coeff_b,
                                  int16_t rounder,
                                  int shift,
                                  int length);

/**
 * float implementation of weighted sum of two vectors.
 * @param[out] out result of addition
 * @param in_a first vector
 * @param in_b second vector
 * @param weight_coeff_a first vector weight coefficient
 * @param weight_coeff_a second vector weight coefficient
 * @param length vectors length
 *
 * @note It is safe to pass the same buffer for out and in_a or in_b.
 */
void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
                             float weight_coeff_a, float weight_coeff_b,
                             int length);

/**
 * Adaptive gain control (as used in AMR postfiltering)
 *
 * @param out output buffer for filtered speech data
 * @param in the input speech buffer (may be the same as out)
 * @param speech_energ input energy
 * @param size the input buffer size
 * @param alpha exponential filter factor
 * @param gain_mem a pointer to the filter memory (single float of size)
 */
void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
                              int size, float alpha, float *gain_mem);

/**
 * Set the sum of squares of a signal by scaling
 *
 * @param out output samples
 * @param in input samples
 * @param sum_of_squares new sum of squares
 * @param n number of samples
 *
 * @note If the input is zero (or its energy underflows), the output is zero.
 *       This is the behavior of AGC in the AMR reference decoder. The QCELP
 *       reference decoder seems to have undefined behavior.
 *
 * TIA/EIA/IS-733 2.4.8.3-2/3/4/5, 2.4.8.6
 * 3GPP TS 26.090 6.1 (6)
 */
void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
                                             float sum_of_squares, const int n);

/**
 * Add fixed vector to an array from a sparse representation
 *
 * @param out fixed vector with pitch sharpening
 * @param in sparse fixed vector
 * @param scale number to multiply the fixed vector by
 * @param size the output vector size
 */
void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size);

/**
 * Clear array values set by set_fixed_vector
 *
 * @param out fixed vector to be cleared
 * @param in sparse fixed vector
 * @param size the output vector size
 */
void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size);

#endif /* AVCODEC_ACELP_VECTORS_H */