summaryrefslogtreecommitdiff
path: root/libavcodec/aacps_tablegen.h
blob: a53f9fac1fe2d361e625b9d2f3cefd5ae0eb2483 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
 * Header file for hardcoded Parametric Stereo tables
 *
 * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#ifndef AACPS_TABLEGEN_H
#define AACPS_TABLEGEN_H

#include <math.h>
#include <stdint.h>

#if CONFIG_HARDCODED_TABLES
#define ps_tableinit()
#define TABLE_CONST const
#include "libavcodec/aacps_tables.h"
#else
#include "libavutil/common.h"
#include "libavutil/libm.h"
#include "libavutil/mathematics.h"
#include "libavutil/mem.h"
#define NR_ALLPASS_BANDS20 30
#define NR_ALLPASS_BANDS34 50
#define PS_AP_LINKS 3
#define TABLE_CONST
static float pd_re_smooth[8*8*8];
static float pd_im_smooth[8*8*8];
static float HA[46][8][4];
static float HB[46][8][4];
static DECLARE_ALIGNED(16, float, f20_0_8) [ 8][8][2];
static DECLARE_ALIGNED(16, float, f34_0_12)[12][8][2];
static DECLARE_ALIGNED(16, float, f34_1_8) [ 8][8][2];
static DECLARE_ALIGNED(16, float, f34_2_4) [ 4][8][2];
static TABLE_CONST DECLARE_ALIGNED(16, float, Q_fract_allpass)[2][50][3][2];
static DECLARE_ALIGNED(16, float, phi_fract)[2][50][2];

static const float g0_Q8[] = {
    0.00746082949812f, 0.02270420949825f, 0.04546865930473f, 0.07266113929591f,
    0.09885108575264f, 0.11793710567217f, 0.125f
};

static const float g0_Q12[] = {
    0.04081179924692f, 0.03812810994926f, 0.05144908135699f, 0.06399831151592f,
    0.07428313801106f, 0.08100347892914f, 0.08333333333333f
};

static const float g1_Q8[] = {
    0.01565675600122f, 0.03752716391991f, 0.05417891378782f, 0.08417044116767f,
    0.10307344158036f, 0.12222452249753f, 0.125f
};

static const float g2_Q4[] = {
    -0.05908211155639f, -0.04871498374946f, 0.0f,   0.07778723915851f,
     0.16486303567403f,  0.23279856662996f, 0.25f
};

static void make_filters_from_proto(float (*filter)[8][2], const float *proto, int bands)
{
    int q, n;
    for (q = 0; q < bands; q++) {
        for (n = 0; n < 7; n++) {
            double theta = 2 * M_PI * (q + 0.5) * (n - 6) / bands;
            filter[q][n][0] = proto[n] *  cos(theta);
            filter[q][n][1] = proto[n] * -sin(theta);
        }
    }
}

static void ps_tableinit(void)
{
    static const float ipdopd_sin[] = { 0, M_SQRT1_2, 1,  M_SQRT1_2,  0, -M_SQRT1_2, -1, -M_SQRT1_2 };
    static const float ipdopd_cos[] = { 1, M_SQRT1_2, 0, -M_SQRT1_2, -1, -M_SQRT1_2,  0,  M_SQRT1_2 };
    int pd0, pd1, pd2;

    static const float iid_par_dequant[] = {
        //iid_par_dequant_default
        0.05623413251903, 0.12589254117942, 0.19952623149689, 0.31622776601684,
        0.44668359215096, 0.63095734448019, 0.79432823472428, 1,
        1.25892541179417, 1.58489319246111, 2.23872113856834, 3.16227766016838,
        5.01187233627272, 7.94328234724282, 17.7827941003892,
        //iid_par_dequant_fine
        0.00316227766017, 0.00562341325190, 0.01,             0.01778279410039,
        0.03162277660168, 0.05623413251903, 0.07943282347243, 0.11220184543020,
        0.15848931924611, 0.22387211385683, 0.31622776601684, 0.39810717055350,
        0.50118723362727, 0.63095734448019, 0.79432823472428, 1,
        1.25892541179417, 1.58489319246111, 1.99526231496888, 2.51188643150958,
        3.16227766016838, 4.46683592150963, 6.30957344480193, 8.91250938133745,
        12.5892541179417, 17.7827941003892, 31.6227766016838, 56.2341325190349,
        100,              177.827941003892, 316.227766016837,
    };
    static const float icc_invq[] = {
        1, 0.937,      0.84118,    0.60092,    0.36764,   0,      -0.589,    -1
    };
    static const float acos_icc_invq[] = {
        0, 0.35685527, 0.57133466, 0.92614472, 1.1943263, M_PI/2, 2.2006171, M_PI
    };
    int iid, icc;

    int k, m;
    static const int8_t f_center_20[] = {
        -3, -1, 1, 3, 5, 7, 10, 14, 18, 22,
    };
    static const int8_t f_center_34[] = {
         2,  6, 10, 14, 18, 22, 26, 30,
        34,-10, -6, -2, 51, 57, 15, 21,
        27, 33, 39, 45, 54, 66, 78, 42,
       102, 66, 78, 90,102,114,126, 90,
    };
    static const float fractional_delay_links[] = { 0.43f, 0.75f, 0.347f };
    const float fractional_delay_gain = 0.39f;

    for (pd0 = 0; pd0 < 8; pd0++) {
        float pd0_re = ipdopd_cos[pd0];
        float pd0_im = ipdopd_sin[pd0];
        for (pd1 = 0; pd1 < 8; pd1++) {
            float pd1_re = ipdopd_cos[pd1];
            float pd1_im = ipdopd_sin[pd1];
            for (pd2 = 0; pd2 < 8; pd2++) {
                float pd2_re = ipdopd_cos[pd2];
                float pd2_im = ipdopd_sin[pd2];
                float re_smooth = 0.25f * pd0_re + 0.5f * pd1_re + pd2_re;
                float im_smooth = 0.25f * pd0_im + 0.5f * pd1_im + pd2_im;
                float pd_mag = 1 / sqrt(im_smooth * im_smooth + re_smooth * re_smooth);
                pd_re_smooth[pd0*64+pd1*8+pd2] = re_smooth * pd_mag;
                pd_im_smooth[pd0*64+pd1*8+pd2] = im_smooth * pd_mag;
            }
        }
    }

    for (iid = 0; iid < 46; iid++) {
        float c = iid_par_dequant[iid]; ///< Linear Inter-channel Intensity Difference
        float c1 = (float)M_SQRT2 / sqrtf(1.0f + c*c);
        float c2 = c * c1;
        for (icc = 0; icc < 8; icc++) {
            /*if (PS_BASELINE || ps->icc_mode < 3)*/ {
                float alpha = 0.5f * acos_icc_invq[icc];
                float beta  = alpha * (c1 - c2) * (float)M_SQRT1_2;
                HA[iid][icc][0] = c2 * cosf(beta + alpha);
                HA[iid][icc][1] = c1 * cosf(beta - alpha);
                HA[iid][icc][2] = c2 * sinf(beta + alpha);
                HA[iid][icc][3] = c1 * sinf(beta - alpha);
            } /* else */ {
                float alpha, gamma, mu, rho;
                float alpha_c, alpha_s, gamma_c, gamma_s;
                rho = FFMAX(icc_invq[icc], 0.05f);
                alpha = 0.5f * atan2f(2.0f * c * rho, c*c - 1.0f);
                mu = c + 1.0f / c;
                mu = sqrtf(1 + (4 * rho * rho - 4)/(mu * mu));
                gamma = atanf(sqrtf((1.0f - mu)/(1.0f + mu)));
                if (alpha < 0) alpha += M_PI/2;
                alpha_c = cosf(alpha);
                alpha_s = sinf(alpha);
                gamma_c = cosf(gamma);
                gamma_s = sinf(gamma);
                HB[iid][icc][0] =  M_SQRT2 * alpha_c * gamma_c;
                HB[iid][icc][1] =  M_SQRT2 * alpha_s * gamma_c;
                HB[iid][icc][2] = -M_SQRT2 * alpha_s * gamma_s;
                HB[iid][icc][3] =  M_SQRT2 * alpha_c * gamma_s;
            }
        }
    }

    for (k = 0; k < NR_ALLPASS_BANDS20; k++) {
        double f_center, theta;
        if (k < FF_ARRAY_ELEMS(f_center_20))
            f_center = f_center_20[k] * 0.125;
        else
            f_center = k - 6.5f;
        for (m = 0; m < PS_AP_LINKS; m++) {
            theta = -M_PI * fractional_delay_links[m] * f_center;
            Q_fract_allpass[0][k][m][0] = cos(theta);
            Q_fract_allpass[0][k][m][1] = sin(theta);
        }
        theta = -M_PI*fractional_delay_gain*f_center;
        phi_fract[0][k][0] = cos(theta);
        phi_fract[0][k][1] = sin(theta);
    }
    for (k = 0; k < NR_ALLPASS_BANDS34; k++) {
        double f_center, theta;
        if (k < FF_ARRAY_ELEMS(f_center_34))
            f_center = f_center_34[k] / 24.0;
        else
            f_center = k - 26.5f;
        for (m = 0; m < PS_AP_LINKS; m++) {
            theta = -M_PI * fractional_delay_links[m] * f_center;
            Q_fract_allpass[1][k][m][0] = cos(theta);
            Q_fract_allpass[1][k][m][1] = sin(theta);
        }
        theta = -M_PI*fractional_delay_gain*f_center;
        phi_fract[1][k][0] = cos(theta);
        phi_fract[1][k][1] = sin(theta);
    }

    make_filters_from_proto(f20_0_8,  g0_Q8,   8);
    make_filters_from_proto(f34_0_12, g0_Q12, 12);
    make_filters_from_proto(f34_1_8,  g1_Q8,   8);
    make_filters_from_proto(f34_2_4,  g2_Q4,   4);
}
#endif /* CONFIG_HARDCODED_TABLES */

#endif /* AACPS_TABLEGEN_H */