summaryrefslogtreecommitdiff
path: root/libavresample/resample.c
diff options
context:
space:
mode:
authorJustin Ruggles <justin.ruggles@gmail.com>2012-03-23 17:42:17 -0400
committerJustin Ruggles <justin.ruggles@gmail.com>2012-04-24 21:28:27 -0400
commitc8af852b97447491823ff9b91413e32415e2babf (patch)
tree6c02f850cf954612c7077f266a75d663bb9cde57 /libavresample/resample.c
parentc5671aeb77abb18a5a10ace314ab49e8fd3d0cb3 (diff)
Add libavresample
This is a new library for audio sample format, channel layout, and sample rate conversion.
Diffstat (limited to 'libavresample/resample.c')
-rw-r--r--libavresample/resample.c480
1 files changed, 480 insertions, 0 deletions
diff --git a/libavresample/resample.c b/libavresample/resample.c
new file mode 100644
index 0000000000..5529fafe8d
--- /dev/null
+++ b/libavresample/resample.c
@@ -0,0 +1,480 @@
+/*
+ * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
+ * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "libavutil/libm.h"
+#include "libavutil/log.h"
+#include "internal.h"
+#include "audio_data.h"
+
+#ifdef CONFIG_RESAMPLE_FLT
+/* float template */
+#define FILTER_SHIFT 0
+#define FELEM float
+#define FELEM2 float
+#define FELEML float
+#define WINDOW_TYPE 24
+#elifdef CONFIG_RESAMPLE_S32
+/* s32 template */
+#define FILTER_SHIFT 30
+#define FELEM int32_t
+#define FELEM2 int64_t
+#define FELEML int64_t
+#define FELEM_MAX INT32_MAX
+#define FELEM_MIN INT32_MIN
+#define WINDOW_TYPE 12
+#else
+/* s16 template */
+#define FILTER_SHIFT 15
+#define FELEM int16_t
+#define FELEM2 int32_t
+#define FELEML int64_t
+#define FELEM_MAX INT16_MAX
+#define FELEM_MIN INT16_MIN
+#define WINDOW_TYPE 9
+#endif
+
+struct ResampleContext {
+ AVAudioResampleContext *avr;
+ AudioData *buffer;
+ FELEM *filter_bank;
+ int filter_length;
+ int ideal_dst_incr;
+ int dst_incr;
+ int index;
+ int frac;
+ int src_incr;
+ int compensation_distance;
+ int phase_shift;
+ int phase_mask;
+ int linear;
+ double factor;
+};
+
+/**
+ * 0th order modified bessel function of the first kind.
+ */
+static double bessel(double x)
+{
+ double v = 1;
+ double lastv = 0;
+ double t = 1;
+ int i;
+
+ x = x * x / 4;
+ for (i = 1; v != lastv; i++) {
+ lastv = v;
+ t *= x / (i * i);
+ v += t;
+ }
+ return v;
+}
+
+/**
+ * Build a polyphase filterbank.
+ *
+ * @param[out] filter filter coefficients
+ * @param factor resampling factor
+ * @param tap_count tap count
+ * @param phase_count phase count
+ * @param scale wanted sum of coefficients for each filter
+ * @param type 0->cubic
+ * 1->blackman nuttall windowed sinc
+ * 2..16->kaiser windowed sinc beta=2..16
+ * @return 0 on success, negative AVERROR code on failure
+ */
+static int build_filter(FELEM *filter, double factor, int tap_count,
+ int phase_count, int scale, int type)
+{
+ int ph, i;
+ double x, y, w;
+ double *tab;
+ const int center = (tap_count - 1) / 2;
+
+ tab = av_malloc(tap_count * sizeof(*tab));
+ if (!tab)
+ return AVERROR(ENOMEM);
+
+ /* if upsampling, only need to interpolate, no filter */
+ if (factor > 1.0)
+ factor = 1.0;
+
+ for (ph = 0; ph < phase_count; ph++) {
+ double norm = 0;
+ for (i = 0; i < tap_count; i++) {
+ x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
+ if (x == 0) y = 1.0;
+ else y = sin(x) / x;
+ switch (type) {
+ case 0: {
+ const float d = -0.5; //first order derivative = -0.5
+ x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
+ if (x < 1.0) y = 1 - 3 * x*x + 2 * x*x*x + d * ( -x*x + x*x*x);
+ else y = d * (-4 + 8 * x - 5 * x*x + x*x*x);
+ break;
+ }
+ case 1:
+ w = 2.0 * x / (factor * tap_count) + M_PI;
+ y *= 0.3635819 - 0.4891775 * cos( w) +
+ 0.1365995 * cos(2 * w) -
+ 0.0106411 * cos(3 * w);
+ break;
+ default:
+ w = 2.0 * x / (factor * tap_count * M_PI);
+ y *= bessel(type * sqrt(FFMAX(1 - w * w, 0)));
+ break;
+ }
+
+ tab[i] = y;
+ norm += y;
+ }
+
+ /* normalize so that an uniform color remains the same */
+ for (i = 0; i < tap_count; i++) {
+#ifdef CONFIG_RESAMPLE_FLT
+ filter[ph * tap_count + i] = tab[i] / norm;
+#else
+ filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm),
+ FELEM_MIN, FELEM_MAX);
+#endif
+ }
+ }
+
+ av_free(tab);
+ return 0;
+}
+
+ResampleContext *ff_audio_resample_init(AVAudioResampleContext *avr)
+{
+ ResampleContext *c;
+ int out_rate = avr->out_sample_rate;
+ int in_rate = avr->in_sample_rate;
+ double factor = FFMIN(out_rate * avr->cutoff / in_rate, 1.0);
+ int phase_count = 1 << avr->phase_shift;
+
+ /* TODO: add support for s32 and float internal formats */
+ if (avr->internal_sample_fmt != AV_SAMPLE_FMT_S16P) {
+ av_log(avr, AV_LOG_ERROR, "Unsupported internal format for "
+ "resampling: %s\n",
+ av_get_sample_fmt_name(avr->internal_sample_fmt));
+ return NULL;
+ }
+ c = av_mallocz(sizeof(*c));
+ if (!c)
+ return NULL;
+
+ c->avr = avr;
+ c->phase_shift = avr->phase_shift;
+ c->phase_mask = phase_count - 1;
+ c->linear = avr->linear_interp;
+ c->factor = factor;
+ c->filter_length = FFMAX((int)ceil(avr->filter_size / factor), 1);
+
+ c->filter_bank = av_mallocz(c->filter_length * (phase_count + 1) * sizeof(FELEM));
+ if (!c->filter_bank)
+ goto error;
+
+ if (build_filter(c->filter_bank, factor, c->filter_length, phase_count,
+ 1 << FILTER_SHIFT, WINDOW_TYPE) < 0)
+ goto error;
+
+ memcpy(&c->filter_bank[c->filter_length * phase_count + 1],
+ c->filter_bank, (c->filter_length - 1) * sizeof(FELEM));
+ c->filter_bank[c->filter_length * phase_count] = c->filter_bank[c->filter_length - 1];
+
+ c->compensation_distance = 0;
+ if (!av_reduce(&c->src_incr, &c->dst_incr, out_rate,
+ in_rate * (int64_t)phase_count, INT32_MAX / 2))
+ goto error;
+ c->ideal_dst_incr = c->dst_incr;
+
+ c->index = -phase_count * ((c->filter_length - 1) / 2);
+ c->frac = 0;
+
+ /* allocate internal buffer */
+ c->buffer = ff_audio_data_alloc(avr->resample_channels, 0,
+ avr->internal_sample_fmt,
+ "resample buffer");
+ if (!c->buffer)
+ goto error;
+
+ av_log(avr, AV_LOG_DEBUG, "resample: %s from %d Hz to %d Hz\n",
+ av_get_sample_fmt_name(avr->internal_sample_fmt),
+ avr->in_sample_rate, avr->out_sample_rate);
+
+ return c;
+
+error:
+ ff_audio_data_free(&c->buffer);
+ av_free(c->filter_bank);
+ av_free(c);
+ return NULL;
+}
+
+void ff_audio_resample_free(ResampleContext **c)
+{
+ if (!*c)
+ return;
+ ff_audio_data_free(&(*c)->buffer);
+ av_free((*c)->filter_bank);
+ av_freep(c);
+}
+
+int avresample_set_compensation(AVAudioResampleContext *avr, int sample_delta,
+ int compensation_distance)
+{
+ ResampleContext *c;
+ AudioData *fifo_buf = NULL;
+ int ret = 0;
+
+ if (compensation_distance < 0)
+ return AVERROR(EINVAL);
+ if (!compensation_distance && sample_delta)
+ return AVERROR(EINVAL);
+
+ /* if resampling was not enabled previously, re-initialize the
+ AVAudioResampleContext and force resampling */
+ if (!avr->resample_needed) {
+ int fifo_samples;
+ double matrix[AVRESAMPLE_MAX_CHANNELS * AVRESAMPLE_MAX_CHANNELS] = { 0 };
+
+ /* buffer any remaining samples in the output FIFO before closing */
+ fifo_samples = av_audio_fifo_size(avr->out_fifo);
+ if (fifo_samples > 0) {
+ fifo_buf = ff_audio_data_alloc(avr->out_channels, fifo_samples,
+ avr->out_sample_fmt, NULL);
+ if (!fifo_buf)
+ return AVERROR(EINVAL);
+ ret = ff_audio_data_read_from_fifo(avr->out_fifo, fifo_buf,
+ fifo_samples);
+ if (ret < 0)
+ goto reinit_fail;
+ }
+ /* save the channel mixing matrix */
+ ret = avresample_get_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS);
+ if (ret < 0)
+ goto reinit_fail;
+
+ /* close the AVAudioResampleContext */
+ avresample_close(avr);
+
+ avr->force_resampling = 1;
+
+ /* restore the channel mixing matrix */
+ ret = avresample_set_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS);
+ if (ret < 0)
+ goto reinit_fail;
+
+ /* re-open the AVAudioResampleContext */
+ ret = avresample_open(avr);
+ if (ret < 0)
+ goto reinit_fail;
+
+ /* restore buffered samples to the output FIFO */
+ if (fifo_samples > 0) {
+ ret = ff_audio_data_add_to_fifo(avr->out_fifo, fifo_buf, 0,
+ fifo_samples);
+ if (ret < 0)
+ goto reinit_fail;
+ ff_audio_data_free(&fifo_buf);
+ }
+ }
+ c = avr->resample;
+ c->compensation_distance = compensation_distance;
+ if (compensation_distance) {
+ c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr *
+ (int64_t)sample_delta / compensation_distance;
+ } else {
+ c->dst_incr = c->ideal_dst_incr;
+ }
+ return 0;
+
+reinit_fail:
+ ff_audio_data_free(&fifo_buf);
+ return ret;
+}
+
+static int resample(ResampleContext *c, int16_t *dst, const int16_t *src,
+ int *consumed, int src_size, int dst_size, int update_ctx)
+{
+ int dst_index, i;
+ int index = c->index;
+ int frac = c->frac;
+ int dst_incr_frac = c->dst_incr % c->src_incr;
+ int dst_incr = c->dst_incr / c->src_incr;
+ int compensation_distance = c->compensation_distance;
+
+ if (!dst != !src)
+ return AVERROR(EINVAL);
+
+ if (compensation_distance == 0 && c->filter_length == 1 &&
+ c->phase_shift == 0) {
+ int64_t index2 = ((int64_t)index) << 32;
+ int64_t incr = (1LL << 32) * c->dst_incr / c->src_incr;
+ dst_size = FFMIN(dst_size,
+ (src_size-1-index) * (int64_t)c->src_incr /
+ c->dst_incr);
+
+ if (dst) {
+ for(dst_index = 0; dst_index < dst_size; dst_index++) {
+ dst[dst_index] = src[index2 >> 32];
+ index2 += incr;
+ }
+ } else {
+ dst_index = dst_size;
+ }
+ index += dst_index * dst_incr;
+ index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
+ frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
+ } else {
+ for (dst_index = 0; dst_index < dst_size; dst_index++) {
+ FELEM *filter = c->filter_bank +
+ c->filter_length * (index & c->phase_mask);
+ int sample_index = index >> c->phase_shift;
+
+ if (!dst && (sample_index + c->filter_length > src_size ||
+ -sample_index >= src_size))
+ break;
+
+ if (dst) {
+ FELEM2 val = 0;
+
+ if (sample_index < 0) {
+ for (i = 0; i < c->filter_length; i++)
+ val += src[FFABS(sample_index + i) % src_size] *
+ (FELEM2)filter[i];
+ } else if (sample_index + c->filter_length > src_size) {
+ break;
+ } else if (c->linear) {
+ FELEM2 v2 = 0;
+ for (i = 0; i < c->filter_length; i++) {
+ val += src[abs(sample_index + i)] * (FELEM2)filter[i];
+ v2 += src[abs(sample_index + i)] * (FELEM2)filter[i + c->filter_length];
+ }
+ val += (v2 - val) * (FELEML)frac / c->src_incr;
+ } else {
+ for (i = 0; i < c->filter_length; i++)
+ val += src[sample_index + i] * (FELEM2)filter[i];
+ }
+
+#ifdef CONFIG_RESAMPLE_FLT
+ dst[dst_index] = av_clip_int16(lrintf(val));
+#else
+ val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
+ dst[dst_index] = av_clip_int16(val);
+#endif
+ }
+
+ frac += dst_incr_frac;
+ index += dst_incr;
+ if (frac >= c->src_incr) {
+ frac -= c->src_incr;
+ index++;
+ }
+ if (dst_index + 1 == compensation_distance) {
+ compensation_distance = 0;
+ dst_incr_frac = c->ideal_dst_incr % c->src_incr;
+ dst_incr = c->ideal_dst_incr / c->src_incr;
+ }
+ }
+ }
+ if (consumed)
+ *consumed = FFMAX(index, 0) >> c->phase_shift;
+
+ if (update_ctx) {
+ if (index >= 0)
+ index &= c->phase_mask;
+
+ if (compensation_distance) {
+ compensation_distance -= dst_index;
+ if (compensation_distance <= 0)
+ return AVERROR_BUG;
+ }
+ c->frac = frac;
+ c->index = index;
+ c->dst_incr = dst_incr_frac + c->src_incr*dst_incr;
+ c->compensation_distance = compensation_distance;
+ }
+
+ return dst_index;
+}
+
+int ff_audio_resample(ResampleContext *c, AudioData *dst, AudioData *src,
+ int *consumed)
+{
+ int ch, in_samples, in_leftover, out_samples = 0;
+ int ret = AVERROR(EINVAL);
+
+ in_samples = src ? src->nb_samples : 0;
+ in_leftover = c->buffer->nb_samples;
+
+ /* add input samples to the internal buffer */
+ if (src) {
+ ret = ff_audio_data_combine(c->buffer, in_leftover, src, 0, in_samples);
+ if (ret < 0)
+ return ret;
+ } else if (!in_leftover) {
+ /* no remaining samples to flush */
+ return 0;
+ } else {
+ /* TODO: pad buffer to flush completely */
+ }
+
+ /* calculate output size and reallocate output buffer if needed */
+ /* TODO: try to calculate this without the dummy resample() run */
+ if (!dst->read_only && dst->allow_realloc) {
+ out_samples = resample(c, NULL, NULL, NULL, c->buffer->nb_samples,
+ INT_MAX, 0);
+ ret = ff_audio_data_realloc(dst, out_samples);
+ if (ret < 0) {
+ av_log(c->avr, AV_LOG_ERROR, "error reallocating output\n");
+ return ret;
+ }
+ }
+
+ /* resample each channel plane */
+ for (ch = 0; ch < c->buffer->channels; ch++) {
+ out_samples = resample(c, (int16_t *)dst->data[ch],
+ (const int16_t *)c->buffer->data[ch], consumed,
+ c->buffer->nb_samples, dst->allocated_samples,
+ ch + 1 == c->buffer->channels);
+ }
+ if (out_samples < 0) {
+ av_log(c->avr, AV_LOG_ERROR, "error during resampling\n");
+ return out_samples;
+ }
+
+ /* drain consumed samples from the internal buffer */
+ ff_audio_data_drain(c->buffer, *consumed);
+
+ av_dlog(c->avr, "resampled %d in + %d leftover to %d out + %d leftover\n",
+ in_samples, in_leftover, out_samples, c->buffer->nb_samples);
+
+ dst->nb_samples = out_samples;
+ return 0;
+}
+
+int avresample_get_delay(AVAudioResampleContext *avr)
+{
+ if (!avr->resample_needed || !avr->resample)
+ return 0;
+
+ return avr->resample->buffer->nb_samples;
+}