summaryrefslogtreecommitdiff
path: root/libavcodec/dca_xll.c
diff options
context:
space:
mode:
authorNiels Möller <nisse@lysator.liu.se>2014-02-11 11:45:27 +0100
committerDiego Biurrun <diego@biurrun.de>2015-03-15 14:51:36 +0100
commit217e4ff4d1f845b76e44634e29371cd09313d1c2 (patch)
treeb2ed55ea486e80a884e463c375204c9b07a73c00 /libavcodec/dca_xll.c
parent4da5aacc7eba274a4f18411120de539d39c5151e (diff)
dca: Support for XLL (lossless extension)
Cleanup and integration by Diego Biurrun. Signed-off-by: Diego Biurrun <diego@biurrun.de>
Diffstat (limited to 'libavcodec/dca_xll.c')
-rw-r--r--libavcodec/dca_xll.c747
1 files changed, 747 insertions, 0 deletions
diff --git a/libavcodec/dca_xll.c b/libavcodec/dca_xll.c
new file mode 100644
index 0000000000..0c32d6ecce
--- /dev/null
+++ b/libavcodec/dca_xll.c
@@ -0,0 +1,747 @@
+/*
+ * DCA XLL extension
+ *
+ * Copyright (C) 2012 Paul B Mahol
+ * Copyright (C) 2014 Niels Möller
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "libavutil/attributes.h"
+#include "libavutil/common.h"
+#include "libavutil/internal.h"
+
+#include "avcodec.h"
+#include "dca.h"
+#include "dcadata.h"
+#include "get_bits.h"
+#include "unary.h"
+
+/* Sign as bit 0 */
+static inline int get_bits_sm(GetBitContext *s, unsigned n)
+{
+ int x = get_bits(s, n);
+ if (x & 1)
+ return -(x >> 1) - 1;
+ else
+ return x >> 1;
+}
+
+/* Return -1 on error. */
+static int32_t get_dmix_coeff(DCAContext *s, int inverse)
+{
+ unsigned code = get_bits(&s->gb, 9);
+ int32_t sign = (int32_t) (code >> 8) - 1;
+ unsigned idx = code & 0xff;
+ int inv_offset = FF_DCA_DMIXTABLE_SIZE -FF_DCA_INV_DMIXTABLE_SIZE;
+ if (idx >= FF_DCA_DMIXTABLE_SIZE) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "XLL: Invalid channel set downmix code %x\n", code);
+ return -1;
+ } else if (!inverse) {
+ return (ff_dca_dmixtable[idx] ^ sign) - sign;
+ } else if (idx < inv_offset) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "XLL: Invalid channel set inverse downmix code %x\n", code);
+ return -1;
+ } else {
+ return (ff_dca_inv_dmixtable[idx - inv_offset] ^ sign) - sign;
+ }
+}
+
+static int32_t dca_get_dmix_coeff(DCAContext *s)
+{
+ return get_dmix_coeff(s, 0);
+}
+
+static int32_t dca_get_inv_dmix_coeff(DCAContext *s)
+{
+ return get_dmix_coeff(s, 1);
+}
+
+/* parse XLL header */
+int ff_dca_xll_decode_header(DCAContext *s)
+{
+ int hdr_pos, hdr_size;
+ av_unused int version, frame_size;
+ int i, chset_index;
+
+ /* get bit position of sync header */
+ hdr_pos = get_bits_count(&s->gb) - 32;
+
+ version = get_bits(&s->gb, 4) + 1;
+ hdr_size = get_bits(&s->gb, 8) + 1;
+
+ frame_size = get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1) + 1;
+
+ s->xll_channels =
+ s->xll_residual_channels = 0;
+ s->xll_nch_sets = get_bits(&s->gb, 4) + 1;
+ s->xll_segments = 1 << get_bits(&s->gb, 4);
+ s->xll_log_smpl_in_seg = get_bits(&s->gb, 4);
+ s->xll_smpl_in_seg = 1 << s->xll_log_smpl_in_seg;
+ s->xll_bits4seg_size = get_bits(&s->gb, 5) + 1;
+ s->xll_banddata_crc = get_bits(&s->gb, 2);
+ s->xll_scalable_lsb = get_bits1(&s->gb);
+ s->xll_bits4ch_mask = get_bits(&s->gb, 5) + 1;
+
+ if (s->xll_scalable_lsb) {
+ s->xll_fixed_lsb_width = get_bits(&s->gb, 4);
+ if (s->xll_fixed_lsb_width)
+ av_log(s->avctx, AV_LOG_WARNING,
+ "XLL: fixed lsb width = %d, non-zero not supported.\n",
+ s->xll_fixed_lsb_width);
+ }
+ /* skip to the end of the common header */
+ i = get_bits_count(&s->gb);
+ if (hdr_pos + hdr_size * 8 > i)
+ skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
+
+ for (chset_index = 0; chset_index < s->xll_nch_sets; chset_index++) {
+ XllChSetSubHeader *chset = &s->xll_chsets[chset_index];
+ hdr_pos = get_bits_count(&s->gb);
+ hdr_size = get_bits(&s->gb, 10) + 1;
+
+ chset->channels = get_bits(&s->gb, 4) + 1;
+ chset->residual_encode = get_bits(&s->gb, chset->channels);
+ chset->bit_resolution = get_bits(&s->gb, 5) + 1;
+ chset->bit_width = get_bits(&s->gb, 5) + 1;
+ chset->sampling_frequency = ff_dca_sampling_freqs[get_bits(&s->gb, 4)];
+ chset->samp_freq_interp = get_bits(&s->gb, 2);
+ chset->replacement_set = get_bits(&s->gb, 2);
+ if (chset->replacement_set)
+ chset->active_replace_set = get_bits(&s->gb, 1);
+
+ if (s->one2one_map_chtospkr) {
+ chset->primary_ch_set = get_bits(&s->gb, 1);
+ chset->downmix_coeff_code_embedded = get_bits(&s->gb, 1);
+ if (chset->downmix_coeff_code_embedded) {
+ chset->downmix_embedded = get_bits(&s->gb, 1);
+ if (chset->primary_ch_set) {
+ chset->downmix_type = get_bits(&s->gb, 3);
+ if (chset->downmix_type > 6) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "XLL: Invalid channel set downmix type\n");
+ return AVERROR_INVALIDDATA;
+ }
+ }
+ }
+ chset->hier_chset = get_bits(&s->gb, 1);
+
+ if (chset->downmix_coeff_code_embedded) {
+ /* nDownmixCoeffs is specified as N * M. For a primary
+ * channel set, it appears that N = number of
+ * channels, and M is the number of downmix channels.
+ *
+ * For a non-primary channel set, N is specified as
+ * number of channels + 1, and M is derived from the
+ * channel set hierarchy, and at least in simple cases
+ * M is the number of channels in preceding channel
+ * sets. */
+ if (chset->primary_ch_set) {
+ static const char dmix_table[7] = { 1, 2, 2, 3, 3, 4, 4 };
+ chset->downmix_ncoeffs = chset->channels * dmix_table[chset->downmix_type];
+ } else
+ chset->downmix_ncoeffs = (chset->channels + 1) * s->xll_channels;
+
+ if (chset->downmix_ncoeffs > DCA_XLL_DMIX_NCOEFFS_MAX) {
+ avpriv_request_sample(s->avctx,
+ "XLL: More than %d downmix coefficients",
+ DCA_XLL_DMIX_NCOEFFS_MAX);
+ return AVERROR_PATCHWELCOME;
+ } else if (chset->primary_ch_set) {
+ for (i = 0; i < chset->downmix_ncoeffs; i++)
+ if ((chset->downmix_coeffs[i] = dca_get_dmix_coeff(s)) == -1)
+ return AVERROR_INVALIDDATA;
+ } else {
+ unsigned c, r;
+ for (c = 0, i = 0; c < s->xll_channels; c++, i += chset->channels + 1) {
+ if ((chset->downmix_coeffs[i] = dca_get_inv_dmix_coeff(s)) == -1)
+ return AVERROR_INVALIDDATA;
+ for (r = 1; r <= chset->channels; r++) {
+ int32_t coeff = dca_get_dmix_coeff(s);
+ if (coeff == -1)
+ return AVERROR_INVALIDDATA;
+ chset->downmix_coeffs[i + r] =
+ (chset->downmix_coeffs[i] * (int64_t) coeff + (1 << 15)) >> 16;
+ }
+ }
+ }
+ }
+ chset->ch_mask_enabled = get_bits(&s->gb, 1);
+ if (chset->ch_mask_enabled)
+ chset->ch_mask = get_bits(&s->gb, s->xll_bits4ch_mask);
+ else
+ /* Skip speaker configuration bits */
+ skip_bits_long(&s->gb, 25 * chset->channels);
+ } else {
+ chset->primary_ch_set = 1;
+ chset->downmix_coeff_code_embedded = 0;
+ /* Spec: NumChHierChSet = 0, NumDwnMixCodeCoeffs = 0, whatever that means. */
+ chset->mapping_coeffs_present = get_bits(&s->gb, 1);
+ if (chset->mapping_coeffs_present) {
+ avpriv_report_missing_feature(s->avctx, "XLL: mapping coefficients");
+ return AVERROR_PATCHWELCOME;
+ }
+ }
+ if (chset->sampling_frequency > 96000)
+ chset->num_freq_bands = 2 * (1 + get_bits(&s->gb, 1));
+ else
+ chset->num_freq_bands = 1;
+
+ if (chset->num_freq_bands > 1) {
+ avpriv_report_missing_feature(s->avctx, "XLL: num_freq_bands > 1");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ if (get_bits(&s->gb, 1)) { /* pw_ch_decor_enabled */
+ int bits = av_ceil_log2(chset->channels);
+ for (i = 0; i < chset->channels; i++) {
+ unsigned j = get_bits(&s->gb, bits);
+ if (j >= chset->channels) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "Original channel order value %u too large, only %d channels.\n",
+ j, chset->channels);
+ return AVERROR_INVALIDDATA;
+ }
+ chset->orig_chan_order[0][i] = j;
+ chset->orig_chan_order_inv[0][j] = i;
+ }
+ for (i = 0; i < chset->channels / 2; i++) {
+ if (get_bits(&s->gb, 1)) /* bChPFlag */
+ chset->pw_ch_pairs_coeffs[0][i] = get_bits_sm(&s->gb, 7);
+ else
+ chset->pw_ch_pairs_coeffs[0][i] = 0;
+ }
+ } else {
+ for (i = 0; i < chset->channels; i++)
+ chset->orig_chan_order[0][i] =
+ chset->orig_chan_order_inv[0][i] = i;
+ for (i = 0; i < chset->channels / 2; i++)
+ chset->pw_ch_pairs_coeffs[0][i] = 0;
+ }
+ /* Adaptive prediction order */
+ chset->adapt_order_max[0] = 0;
+ for (i = 0; i < chset->channels; i++) {
+ chset->adapt_order[0][i] = get_bits(&s->gb, 4);
+ if (chset->adapt_order_max[0] < chset->adapt_order[0][i])
+ chset->adapt_order_max[0] = chset->adapt_order[0][i];
+ }
+ /* Fixed prediction order, used in case the adaptive order
+ * above is zero */
+ for (i = 0; i < chset->channels; i++)
+ chset->fixed_order[0][i] =
+ chset->adapt_order[0][i] ? 0 : get_bits(&s->gb, 2);
+
+ for (i = 0; i < chset->channels; i++) {
+ unsigned j;
+ for (j = 0; j < chset->adapt_order[0][i]; j++)
+ chset->lpc_refl_coeffs_q_ind[0][i][j] = get_bits(&s->gb, 8);
+ }
+
+ if (s->xll_scalable_lsb) {
+ chset->lsb_fsize[0] = get_bits(&s->gb, s->xll_bits4seg_size);
+
+ for (i = 0; i < chset->channels; i++)
+ chset->scalable_lsbs[0][i] = get_bits(&s->gb, 4);
+ for (i = 0; i < chset->channels; i++)
+ chset->bit_width_adj_per_ch[0][i] = get_bits(&s->gb, 4);
+ } else {
+ memset(chset->scalable_lsbs[0], 0,
+ chset->channels * sizeof(chset->scalable_lsbs[0][0]));
+ memset(chset->bit_width_adj_per_ch[0], 0,
+ chset->channels * sizeof(chset->bit_width_adj_per_ch[0][0]));
+ }
+
+ s->xll_channels += chset->channels;
+ s->xll_residual_channels += chset->channels -
+ av_popcount(chset->residual_encode);
+
+ /* FIXME: Parse header data for extra frequency bands. */
+
+ /* Skip to end of channel set sub header. */
+ i = get_bits_count(&s->gb);
+ if (hdr_pos + 8 * hdr_size < i) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "chset header too large, %d bits, should be <= %d bits\n",
+ i - hdr_pos, 8 * hdr_size);
+ return AVERROR_INVALIDDATA;
+ }
+ if (hdr_pos + 8 * hdr_size > i)
+ skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
+ }
+ return 0;
+}
+
+/* parse XLL navigation table */
+int ff_dca_xll_decode_navi(DCAContext *s, int asset_end)
+{
+ int nbands, band, chset, seg, data_start;
+
+ /* FIXME: Supports only a single frequency band */
+ nbands = 1;
+
+ for (band = 0; band < nbands; band++) {
+ s->xll_navi.band_size[band] = 0;
+ for (seg = 0; seg < s->xll_segments; seg++) {
+ /* Note: The spec, ETSI TS 102 114 V1.4.1 (2012-09), says
+ * we should read a base value for segment_size from the
+ * stream, before reading the sizes of the channel sets.
+ * But that's apparently incorrect. */
+ s->xll_navi.segment_size[band][seg] = 0;
+
+ for (chset = 0; chset < s->xll_nch_sets; chset++)
+ if (band < s->xll_chsets[chset].num_freq_bands) {
+ s->xll_navi.chset_size[band][seg][chset] =
+ get_bits(&s->gb, s->xll_bits4seg_size) + 1;
+ s->xll_navi.segment_size[band][seg] +=
+ s->xll_navi.chset_size[band][seg][chset];
+ }
+ s->xll_navi.band_size[band] += s->xll_navi.segment_size[band][seg];
+ }
+ }
+ /* Align to 8 bits and skip 16-bit CRC. */
+ skip_bits_long(&s->gb, 16 + ((-get_bits_count(&s->gb)) & 7));
+
+ data_start = get_bits_count(&s->gb);
+ if (data_start + 8 * s->xll_navi.band_size[0] > asset_end) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "XLL: Data in NAVI table exceeds containing asset\n"
+ "start: %d (bit), size %u (bytes), end %d (bit), error %u\n",
+ data_start, s->xll_navi.band_size[0], asset_end,
+ data_start + 8 * s->xll_navi.band_size[0] - asset_end);
+ return AVERROR_INVALIDDATA;
+ }
+ init_get_bits(&s->xll_navi.gb, s->gb.buffer + data_start / 8,
+ 8 * s->xll_navi.band_size[0]);
+ return 0;
+}
+
+static void dca_xll_inv_adapt_pred(int *samples, int nsamples, unsigned order,
+ const int *prev, const uint8_t *q_ind)
+{
+ static const uint16_t table[0x81] = {
+ 0, 3070, 5110, 7140, 9156, 11154, 13132, 15085,
+ 17010, 18904, 20764, 22588, 24373, 26117, 27818, 29474,
+ 31085, 32648, 34164, 35631, 37049, 38418, 39738, 41008,
+ 42230, 43404, 44530, 45609, 46642, 47630, 48575, 49477,
+ 50337, 51157, 51937, 52681, 53387, 54059, 54697, 55302,
+ 55876, 56421, 56937, 57426, 57888, 58326, 58741, 59132,
+ 59502, 59852, 60182, 60494, 60789, 61066, 61328, 61576,
+ 61809, 62029, 62236, 62431, 62615, 62788, 62951, 63105,
+ 63250, 63386, 63514, 63635, 63749, 63855, 63956, 64051,
+ 64140, 64224, 64302, 64376, 64446, 64512, 64573, 64631,
+ 64686, 64737, 64785, 64830, 64873, 64913, 64950, 64986,
+ 65019, 65050, 65079, 65107, 65133, 65157, 65180, 65202,
+ 65222, 65241, 65259, 65275, 65291, 65306, 65320, 65333,
+ 65345, 65357, 65368, 65378, 65387, 65396, 65405, 65413,
+ 65420, 65427, 65434, 65440, 65446, 65451, 65456, 65461,
+ 65466, 65470, 65474, 65478, 65481, 65485, 65488, 65491,
+ 65535, /* Final value is for the -128 corner case, see below. */
+ };
+ int c[DCA_XLL_AORDER_MAX];
+ int64_t s;
+ unsigned i, j;
+
+ for (i = 0; i < order; i++) {
+ if (q_ind[i] & 1)
+ /* The index value 0xff corresponds to a lookup of entry 0x80 in
+ * the table, and no value is provided in the specification. */
+ c[i] = -table[(q_ind[i] >> 1) + 1];
+ else
+ c[i] = table[q_ind[i] >> 1];
+ }
+ /* The description in the spec is a bit convoluted. We can convert
+ * the reflected values to direct values in place, using a
+ * sequence of reflections operating on two values. */
+ for (i = 1; i < order; i++) {
+ /* i = 1: scale c[0]
+ * i = 2: reflect c[0] <-> c[1]
+ * i = 3: scale c[1], reflect c[0] <-> c[2]
+ * i = 4: reflect c[0] <-> c[3] reflect c[1] <-> c[2]
+ * ... */
+ if (i & 1)
+ c[i / 2] += ((int64_t) c[i] * c[i / 2] + 0x8000) >> 16;
+ for (j = 0; j < i / 2; j++) {
+ int r0 = c[j];
+ int r1 = c[i - j - 1];
+ c[j] += ((int64_t) c[i] * r1 + 0x8000) >> 16;
+ c[i - j - 1] += ((int64_t) c[i] * r0 + 0x8000) >> 16;
+ }
+ }
+ /* Apply predictor. */
+ /* NOTE: Processing samples in this order means that the
+ * predictor is applied to the newly reconstructed samples. */
+ if (prev) {
+ for (i = 0; i < order; i++) {
+ for (j = s = 0; j < i; j++)
+ s += (int64_t) c[j] * samples[i - 1 - j];
+ for (; j < order; j++)
+ s += (int64_t) c[j] * prev[DCA_XLL_AORDER_MAX + i - 1 - j];
+
+ samples[i] -= av_clip((s + 0x8000) >> 16, -0x1000000, 0xffffff);
+ }
+ }
+ for (i = order; i < nsamples; i++) {
+ for (j = s = 0; j < order; j++)
+ s += (int64_t) c[j] * samples[i - 1 - j];
+
+ /* NOTE: Equations seem to imply addition, while the
+ * pseudocode seems to use subtraction.*/
+ samples[i] -= av_clip((s + 0x8000) >> 16, -0x1000000, 0xffffff);
+ }
+}
+
+int ff_dca_xll_decode_audio(DCAContext *s, AVFrame *frame)
+{
+ /* FIXME: Decodes only the first frequency band. */
+ int seg, chset_i;
+
+ /* Coding parameters for each channel set. */
+ struct coding_params {
+ int seg_type;
+ int rice_code_flag[16];
+ int pancAuxABIT[16];
+ int pancABIT0[16]; /* Not sure what this is */
+ int pancABIT[16]; /* Not sure what this is */
+ int nSamplPart0[16];
+ } param_state[16];
+
+ GetBitContext *gb = &s->xll_navi.gb;
+ int *history;
+
+ /* Layout: First the sample buffer for one segment per channel,
+ * followed by history buffers of DCA_XLL_AORDER_MAX samples for
+ * each channel. */
+ av_fast_malloc(&s->xll_sample_buf, &s->xll_sample_buf_size,
+ (s->xll_smpl_in_seg + DCA_XLL_AORDER_MAX) *
+ s->xll_channels * sizeof(*s->xll_sample_buf));
+ if (!s->xll_sample_buf)
+ return AVERROR(ENOMEM);
+
+ history = s->xll_sample_buf + s->xll_smpl_in_seg * s->xll_channels;
+
+ for (seg = 0; seg < s->xll_segments; seg++) {
+ unsigned in_channel;
+
+ for (chset_i = in_channel = 0; chset_i < s->xll_nch_sets; chset_i++) {
+ /* The spec isn't very explicit, but I think the NAVI sizes are in bytes. */
+ int end_pos = get_bits_count(gb) +
+ 8 * s->xll_navi.chset_size[0][seg][chset_i];
+ int i, j;
+ struct coding_params *params = &param_state[chset_i];
+ /* I think this flag means that we should keep seg_type and
+ * other parameters from the previous segment. */
+ int use_seg_state_code_param;
+ XllChSetSubHeader *chset = &s->xll_chsets[chset_i];
+ if (in_channel >= s->avctx->channels)
+ /* FIXME: Could go directly to next segment */
+ goto next_chset;
+
+ if (s->avctx->sample_rate != chset->sampling_frequency) {
+ av_log(s->avctx, AV_LOG_WARNING,
+ "XLL: unexpected chset sample rate %d, expected %d\n",
+ chset->sampling_frequency, s->avctx->sample_rate);
+ goto next_chset;
+ }
+ if (seg != 0)
+ use_seg_state_code_param = get_bits(gb, 1);
+ else
+ use_seg_state_code_param = 0;
+
+ if (!use_seg_state_code_param) {
+ int num_param_sets, i;
+ unsigned bits4ABIT;
+
+ params->seg_type = get_bits(gb, 1);
+ num_param_sets = params->seg_type ? 1 : chset->channels;
+
+ if (chset->bit_width > 16) {
+ bits4ABIT = 5;
+ } else {
+ if (chset->bit_width > 8)
+ bits4ABIT = 4;
+ else
+ bits4ABIT = 3;
+ if (s->xll_nch_sets > 1)
+ bits4ABIT++;
+ }
+
+ for (i = 0; i < num_param_sets; i++) {
+ params->rice_code_flag[i] = get_bits(gb, 1);
+ if (!params->seg_type && params->rice_code_flag[i] && get_bits(gb, 1))
+ params->pancAuxABIT[i] = get_bits(gb, bits4ABIT) + 1;
+ else
+ params->pancAuxABIT[i] = 0;
+ }
+
+ for (i = 0; i < num_param_sets; i++) {
+ if (!seg) {
+ /* Parameters for part 1 */
+ params->pancABIT0[i] = get_bits(gb, bits4ABIT);
+ if (params->rice_code_flag[i] == 0 && params->pancABIT0[i] > 0)
+ /* For linear code */
+ params->pancABIT0[i]++;
+
+ /* NOTE: In the spec, not indexed by band??? */
+ if (params->seg_type == 0)
+ params->nSamplPart0[i] = chset->adapt_order[0][i];
+ else
+ params->nSamplPart0[i] = chset->adapt_order_max[0];
+ } else
+ params->nSamplPart0[i] = 0;
+
+ /* Parameters for part 2 */
+ params->pancABIT[i] = get_bits(gb, bits4ABIT);
+ if (params->rice_code_flag[i] == 0 && params->pancABIT[i] > 0)
+ /* For linear code */
+ params->pancABIT[i]++;
+ }
+ }
+ for (i = 0; i < chset->channels; i++) {
+ int param_index = params->seg_type ? 0 : i;
+ int bits = params->pancABIT0[param_index];
+ int part0 = params->nSamplPart0[param_index];
+ int *sample_buf = s->xll_sample_buf +
+ (in_channel + i) * s->xll_smpl_in_seg;
+
+ if (!params->rice_code_flag[param_index]) {
+ /* Linear code */
+ if (bits)
+ for (j = 0; j < part0; j++)
+ sample_buf[j] = get_bits_sm(gb, bits);
+ else
+ memset(sample_buf, 0, part0 * sizeof(sample_buf[0]));
+
+ /* Second part */
+ bits = params->pancABIT[param_index];
+ if (bits)
+ for (j = part0; j < s->xll_smpl_in_seg; j++)
+ sample_buf[j] = get_bits_sm(gb, bits);
+ else
+ memset(sample_buf + part0, 0,
+ (s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0]));
+ } else {
+ int aux_bits = params->pancAuxABIT[param_index];
+
+ for (j = 0; j < part0; j++) {
+ /* FIXME: Is this identical to Golomb code? */
+ int t = get_unary(gb, 1, 33) << bits;
+ /* FIXME: Could move this test outside of the loop, for efficiency. */
+ if (bits)
+ t |= get_bits(gb, bits);
+ sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1);
+ }
+
+ /* Second part */
+ bits = params->pancABIT[param_index];
+
+ /* Follow the spec's suggestion of using the
+ * buffer also to store the hybrid-rice flags. */
+ memset(sample_buf + part0, 0,
+ (s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0]));
+
+ if (aux_bits > 0) {
+ /* For hybrid rice encoding, some samples are linearly
+ * coded. According to the spec, "nBits4SamplLoci" bits
+ * are used for each index, but this value is not
+ * defined. I guess we should use log2(xll_smpl_in_seg)
+ * bits. */
+ int count = get_bits(gb, s->xll_log_smpl_in_seg);
+ av_log(s->avctx, AV_LOG_DEBUG, "aux count %d (bits %d)\n",
+ count, s->xll_log_smpl_in_seg);
+
+ for (j = 0; j < count; j++)
+ sample_buf[get_bits(gb, s->xll_log_smpl_in_seg)] = 1;
+ }
+ for (j = part0; j < s->xll_smpl_in_seg; j++) {
+ if (!sample_buf[j]) {
+ int t = get_unary(gb, 1, 33);
+ if (bits)
+ t = (t << bits) | get_bits(gb, bits);
+ sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1);
+ } else
+ sample_buf[j] = get_bits_sm(gb, aux_bits);
+ }
+ }
+ }
+
+ for (i = 0; i < chset->channels; i++) {
+ unsigned adapt_order = chset->adapt_order[0][i];
+ int *sample_buf = s->xll_sample_buf +
+ (in_channel + i) * s->xll_smpl_in_seg;
+ int *prev = history + (in_channel + i) * DCA_XLL_AORDER_MAX;
+
+ if (!adapt_order) {
+ unsigned order;
+ for (order = chset->fixed_order[0][i]; order > 0; order--) {
+ unsigned j;
+ for (j = 1; j < s->xll_smpl_in_seg; j++)
+ sample_buf[j] += sample_buf[j - 1];
+ }
+ } else
+ /* Inverse adaptive prediction, in place. */
+ dca_xll_inv_adapt_pred(sample_buf, s->xll_smpl_in_seg,
+ adapt_order, seg ? prev : NULL,
+ chset->lpc_refl_coeffs_q_ind[0][i]);
+ memcpy(prev, sample_buf + s->xll_smpl_in_seg - DCA_XLL_AORDER_MAX,
+ DCA_XLL_AORDER_MAX * sizeof(*prev));
+ }
+ for (i = 1; i < chset->channels; i += 2) {
+ int coeff = chset->pw_ch_pairs_coeffs[0][i / 2];
+ if (coeff != 0) {
+ int *sample_buf = s->xll_sample_buf +
+ (in_channel + i) * s->xll_smpl_in_seg;
+ int *prev = sample_buf - s->xll_smpl_in_seg;
+ unsigned j;
+ for (j = 0; j < s->xll_smpl_in_seg; j++)
+ /* Shift is unspecified, but should apparently be 3. */
+ sample_buf[j] += ((int64_t) coeff * prev[j] + 4) >> 3;
+ }
+ }
+
+ if (s->xll_scalable_lsb) {
+ int lsb_start = end_pos - 8 * chset->lsb_fsize[0] -
+ 8 * (s->xll_banddata_crc & 2);
+ int done;
+ i = get_bits_count(gb);
+ if (i > lsb_start) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "chset data lsb exceeds NAVI size, end_pos %d, lsb_start %d, pos %d\n",
+ end_pos, lsb_start, i);
+ return AVERROR_INVALIDDATA;
+ }
+ if (i < lsb_start)
+ skip_bits_long(gb, lsb_start - i);
+
+ for (i = done = 0; i < chset->channels; i++) {
+ int bits = chset->scalable_lsbs[0][i];
+ if (bits > 0) {
+ /* The channel reordering is conceptually done
+ * before adding the lsb:s, so we need to do
+ * the inverse permutation here. */
+ unsigned pi = chset->orig_chan_order_inv[0][i];
+ int *sample_buf = s->xll_sample_buf +
+ (in_channel + pi) * s->xll_smpl_in_seg;
+ int adj = chset->bit_width_adj_per_ch[0][i];
+ int msb_shift = bits;
+ unsigned j;
+
+ if (adj > 0)
+ msb_shift += adj - 1;
+
+ for (j = 0; j < s->xll_smpl_in_seg; j++)
+ sample_buf[j] = (sample_buf[j] << msb_shift) +
+ (get_bits(gb, bits) << adj);
+
+ done += bits * s->xll_smpl_in_seg;
+ }
+ }
+ if (done > 8 * chset->lsb_fsize[0]) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "chset lsb exceeds lsb_size\n");
+ return AVERROR_INVALIDDATA;
+ }
+ }
+
+ /* Store output. */
+ for (i = 0; i < chset->channels; i++) {
+ int *sample_buf = s->xll_sample_buf +
+ (in_channel + i) * s->xll_smpl_in_seg;
+ int shift = 1 - chset->bit_resolution;
+ int out_channel = chset->orig_chan_order[0][i];
+ float *out;
+
+ /* XLL uses the channel order C, L, R, and we want L,
+ * R, C. FIXME: Generalize. */
+ if (chset->ch_mask_enabled &&
+ (chset->ch_mask & 7) == 7 && out_channel < 3)
+ out_channel = out_channel ? out_channel - 1 : 2;
+
+ out_channel += in_channel;
+ if (out_channel >= s->avctx->channels)
+ continue;
+
+ out = (float *) frame->extended_data[out_channel];
+ out += seg * s->xll_smpl_in_seg;
+
+ /* NOTE: A one bit means residual encoding is *not* used. */
+ if ((chset->residual_encode >> i) & 1) {
+ /* Replace channel samples.
+ * FIXME: Most likely not the right thing to do. */
+ for (j = 0; j < s->xll_smpl_in_seg; j++)
+ out[j] = ldexpf(sample_buf[j], shift);
+ } else {
+ /* Add residual signal to core channel */
+ for (j = 0; j < s->xll_smpl_in_seg; j++)
+ out[j] += ldexpf(sample_buf[j], shift);
+ }
+ }
+
+ if (chset->downmix_coeff_code_embedded &&
+ !chset->primary_ch_set && chset->hier_chset) {
+ /* Undo hierarchical downmix of earlier channels. */
+ unsigned mix_channel;
+ for (mix_channel = 0; mix_channel < in_channel; mix_channel++) {
+ float *mix_buf;
+ const int *col;
+ float coeff;
+ unsigned row;
+ /* Similar channel reorder C, L, R vs L, R, C reorder. */
+ if (chset->ch_mask_enabled &&
+ (chset->ch_mask & 7) == 7 && mix_channel < 3)
+ mix_buf = (float *) frame->extended_data[mix_channel ? mix_channel - 1 : 2];
+ else
+ mix_buf = (float *) frame->extended_data[mix_channel];
+
+ mix_buf += seg * s->xll_smpl_in_seg;
+ col = &chset->downmix_coeffs[mix_channel * (chset->channels + 1)];
+
+ /* Scale */
+ coeff = ldexpf(col[0], -16);
+ for (j = 0; j < s->xll_smpl_in_seg; j++)
+ mix_buf[j] *= coeff;
+
+ for (row = 0;
+ row < chset->channels && in_channel + row < s->avctx->channels;
+ row++)
+ if (col[row + 1]) {
+ const float *new_channel =
+ (const float *) frame->extended_data[in_channel + row];
+ new_channel += seg * s->xll_smpl_in_seg;
+ coeff = ldexpf(col[row + 1], -15);
+ for (j = 0; j < s->xll_smpl_in_seg; j++)
+ mix_buf[j] -= coeff * new_channel[j];
+ }
+ }
+ }
+
+next_chset:
+ in_channel += chset->channels;
+ /* Skip to next channel set using the NAVI info. */
+ i = get_bits_count(gb);
+ if (i > end_pos) {
+ av_log(s->avctx, AV_LOG_ERROR,
+ "chset data exceeds NAVI size\n");
+ return AVERROR_INVALIDDATA;
+ }
+ if (i < end_pos)
+ skip_bits_long(gb, end_pos - i);
+ }
+ }
+ return 0;
+}