summaryrefslogtreecommitdiff
path: root/libavcodec/aacsbr.c
diff options
context:
space:
mode:
authorAlex Converse <alex.converse@gmail.com>2010-03-08 04:33:02 +0000
committerAlex Converse <alex.converse@gmail.com>2010-03-08 04:33:02 +0000
commited492b61dbe64ef8c25eb1e72ac7ca4e9df9bbd6 (patch)
tree7bfa8a074fdb1f4c21ddb4bd3cbd500413e2580c /libavcodec/aacsbr.c
parentf19341e17a0ece29613cc583daaee6ec58aea9c5 (diff)
Add an HE-AAC v1 decoder.
A large portion of this code was orignally authored by Robert Swain. The rest was written by me. Full history is available at: svn://svn.ffmpeg.org/soc/aac-sbr http://github.com/aconverse/ffmpeg-heaac/tree/sbr_pub Originally committed as revision 22316 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/aacsbr.c')
-rw-r--r--libavcodec/aacsbr.c1759
1 files changed, 1759 insertions, 0 deletions
diff --git a/libavcodec/aacsbr.c b/libavcodec/aacsbr.c
new file mode 100644
index 0000000000..e317a5c72f
--- /dev/null
+++ b/libavcodec/aacsbr.c
@@ -0,0 +1,1759 @@
+/*
+ * AAC Spectral Band Replication decoding functions
+ * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
+ * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file libavcodec/aacsbr.c
+ * AAC Spectral Band Replication decoding functions
+ * @author Robert Swain ( rob opendot cl )
+ */
+
+#include "aac.h"
+#include "sbr.h"
+#include "aacsbr.h"
+#include "aacsbrdata.h"
+
+#include <stdint.h>
+#include <float.h>
+
+#define ENVELOPE_ADJUSTMENT_OFFSET 2
+#define NOISE_FLOOR_OFFSET 6.0f
+
+/**
+ * SBR VLC tables
+ */
+enum {
+ T_HUFFMAN_ENV_1_5DB,
+ F_HUFFMAN_ENV_1_5DB,
+ T_HUFFMAN_ENV_BAL_1_5DB,
+ F_HUFFMAN_ENV_BAL_1_5DB,
+ T_HUFFMAN_ENV_3_0DB,
+ F_HUFFMAN_ENV_3_0DB,
+ T_HUFFMAN_ENV_BAL_3_0DB,
+ F_HUFFMAN_ENV_BAL_3_0DB,
+ T_HUFFMAN_NOISE_3_0DB,
+ T_HUFFMAN_NOISE_BAL_3_0DB,
+};
+
+/**
+ * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
+ */
+enum {
+ FIXFIX,
+ FIXVAR,
+ VARFIX,
+ VARVAR,
+};
+
+enum {
+ EXTENSION_ID_PS = 2,
+};
+
+static VLC vlc_sbr[10];
+static const int8_t vlc_sbr_lav[10] =
+ { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
+static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
+static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
+static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
+static const DECLARE_ALIGNED(16, float, zero64)[64];
+
+#define SBR_INIT_VLC_STATIC(num, size) \
+ INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
+ sbr_tmp[num].sbr_bits , 1, 1, \
+ sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
+ size)
+
+#define SBR_VLC_ROW(name) \
+ { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
+
+av_cold void ff_aac_sbr_init(void)
+{
+ int n, k;
+ static const struct {
+ const void *sbr_codes, *sbr_bits;
+ const unsigned int table_size, elem_size;
+ } sbr_tmp[] = {
+ SBR_VLC_ROW(t_huffman_env_1_5dB),
+ SBR_VLC_ROW(f_huffman_env_1_5dB),
+ SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
+ SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
+ SBR_VLC_ROW(t_huffman_env_3_0dB),
+ SBR_VLC_ROW(f_huffman_env_3_0dB),
+ SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
+ SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
+ SBR_VLC_ROW(t_huffman_noise_3_0dB),
+ SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
+ };
+
+ // SBR VLC table initialization
+ SBR_INIT_VLC_STATIC(0, 1098);
+ SBR_INIT_VLC_STATIC(1, 1092);
+ SBR_INIT_VLC_STATIC(2, 768);
+ SBR_INIT_VLC_STATIC(3, 1026);
+ SBR_INIT_VLC_STATIC(4, 1058);
+ SBR_INIT_VLC_STATIC(5, 1052);
+ SBR_INIT_VLC_STATIC(6, 544);
+ SBR_INIT_VLC_STATIC(7, 544);
+ SBR_INIT_VLC_STATIC(8, 592);
+ SBR_INIT_VLC_STATIC(9, 512);
+
+ for (n = 0; n < 64; n++) {
+ float pre = M_PI * n / 64;
+ analysis_cos_pre[n] = cosf(pre);
+ analysis_sin_pre[n] = sinf(pre);
+ }
+ for (k = 0; k < 32; k++) {
+ float post = M_PI * (k + 0.5) / 128;
+ analysis_cossin_post[k][0] = 4.0 * cosf(post);
+ analysis_cossin_post[k][1] = -4.0 * sinf(post);
+ }
+ for (n = 1; n < 320; n++)
+ sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
+ sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
+ sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
+
+ for (n = 0; n < 320; n++)
+ sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
+}
+
+av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
+{
+ sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
+ sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
+ sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
+ ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
+ ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
+}
+
+av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
+{
+ ff_mdct_end(&sbr->mdct);
+ ff_rdft_end(&sbr->rdft);
+}
+
+static int qsort_comparison_function_int16(const void *a, const void *b)
+{
+ return *(const int16_t *)a - *(const int16_t *)b;
+}
+
+static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
+{
+ int i;
+ for (i = 0; i <= last_el; i++)
+ if (table[i] == needle)
+ return 1;
+ return 0;
+}
+
+/// Limiter Frequency Band Table (14496-3 sp04 p198)
+static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
+{
+ int k;
+ if (sbr->bs_limiter_bands > 0) {
+ static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
+ 1.18509277094158210129f, //2^(0.49/2)
+ 1.11987160404675912501f }; //2^(0.49/3)
+ const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
+ int16_t patch_borders[5];
+ uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
+
+ patch_borders[0] = sbr->kx[1];
+ for (k = 1; k <= sbr->num_patches; k++)
+ patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
+
+ memcpy(sbr->f_tablelim, sbr->f_tablelow,
+ (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
+ if (sbr->num_patches > 1)
+ memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
+ (sbr->num_patches - 1) * sizeof(patch_borders[0]));
+
+ qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
+ sizeof(sbr->f_tablelim[0]),
+ qsort_comparison_function_int16);
+
+ sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
+ while (out < sbr->f_tablelim + sbr->n_lim) {
+ if (*in >= *out * lim_bands_per_octave_warped) {
+ *++out = *in++;
+ } else if (*in == *out ||
+ !in_table_int16(patch_borders, sbr->num_patches, *in)) {
+ in++;
+ sbr->n_lim--;
+ } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
+ *out = *in++;
+ sbr->n_lim--;
+ } else {
+ *++out = *in++;
+ }
+ }
+ } else {
+ sbr->f_tablelim[0] = sbr->f_tablelow[0];
+ sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
+ sbr->n_lim = 1;
+ }
+}
+
+static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
+{
+ unsigned int cnt = get_bits_count(gb);
+ uint8_t bs_header_extra_1;
+ uint8_t bs_header_extra_2;
+ int old_bs_limiter_bands = sbr->bs_limiter_bands;
+ SpectrumParameters old_spectrum_params;
+
+ sbr->start = 1;
+
+ // Save last spectrum parameters variables to compare to new ones
+ memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
+
+ sbr->bs_amp_res_header = get_bits1(gb);
+ sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
+ sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
+ sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
+ skip_bits(gb, 2); // bs_reserved
+
+ bs_header_extra_1 = get_bits1(gb);
+ bs_header_extra_2 = get_bits1(gb);
+
+ if (bs_header_extra_1) {
+ sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
+ sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
+ sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
+ } else {
+ sbr->spectrum_params.bs_freq_scale = 2;
+ sbr->spectrum_params.bs_alter_scale = 1;
+ sbr->spectrum_params.bs_noise_bands = 2;
+ }
+
+ // Check if spectrum parameters changed
+ if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
+ sbr->reset = 1;
+
+ if (bs_header_extra_2) {
+ sbr->bs_limiter_bands = get_bits(gb, 2);
+ sbr->bs_limiter_gains = get_bits(gb, 2);
+ sbr->bs_interpol_freq = get_bits1(gb);
+ sbr->bs_smoothing_mode = get_bits1(gb);
+ } else {
+ sbr->bs_limiter_bands = 2;
+ sbr->bs_limiter_gains = 2;
+ sbr->bs_interpol_freq = 1;
+ sbr->bs_smoothing_mode = 1;
+ }
+
+ if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
+ sbr_make_f_tablelim(sbr);
+
+ return get_bits_count(gb) - cnt;
+}
+
+static int array_min_int16(const int16_t *array, int nel)
+{
+ int i, min = array[0];
+ for (i = 1; i < nel; i++)
+ min = FFMIN(array[i], min);
+ return min;
+}
+
+static void make_bands(int16_t* bands, int start, int stop, int num_bands)
+{
+ int k, previous, present;
+ float base, prod;
+
+ base = powf((float)stop / start, 1.0f / num_bands);
+ prod = start;
+ previous = start;
+
+ for (k = 0; k < num_bands-1; k++) {
+ prod *= base;
+ present = lrintf(prod);
+ bands[k] = present - previous;
+ previous = present;
+ }
+ bands[num_bands-1] = stop - previous;
+}
+
+static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
+{
+ // Requirements (14496-3 sp04 p205)
+ if (n_master <= 0) {
+ av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
+ return -1;
+ }
+ if (bs_xover_band >= n_master) {
+ av_log(avccontext, AV_LOG_ERROR,
+ "Invalid bitstream, crossover band index beyond array bounds: %d\n",
+ bs_xover_band);
+ return -1;
+ }
+ return 0;
+}
+
+/// Master Frequency Band Table (14496-3 sp04 p194)
+static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
+ SpectrumParameters *spectrum)
+{
+ unsigned int temp, max_qmf_subbands;
+ unsigned int start_min, stop_min;
+ int k;
+ const int8_t *sbr_offset_ptr;
+ int16_t stop_dk[13];
+
+ if (sbr->sample_rate < 32000) {
+ temp = 3000;
+ } else if (sbr->sample_rate < 64000) {
+ temp = 4000;
+ } else
+ temp = 5000;
+
+ start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
+ stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
+
+ switch (sbr->sample_rate) {
+ case 16000:
+ sbr_offset_ptr = sbr_offset[0];
+ break;
+ case 22050:
+ sbr_offset_ptr = sbr_offset[1];
+ break;
+ case 24000:
+ sbr_offset_ptr = sbr_offset[2];
+ break;
+ case 32000:
+ sbr_offset_ptr = sbr_offset[3];
+ break;
+ case 44100: case 48000: case 64000:
+ sbr_offset_ptr = sbr_offset[4];
+ break;
+ case 88200: case 96000: case 128000: case 176400: case 192000:
+ sbr_offset_ptr = sbr_offset[5];
+ break;
+ default:
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
+ return -1;
+ }
+
+ sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
+
+ if (spectrum->bs_stop_freq < 14) {
+ sbr->k[2] = stop_min;
+ make_bands(stop_dk, stop_min, 64, 13);
+ qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
+ for (k = 0; k < spectrum->bs_stop_freq; k++)
+ sbr->k[2] += stop_dk[k];
+ } else if (spectrum->bs_stop_freq == 14) {
+ sbr->k[2] = 2*sbr->k[0];
+ } else if (spectrum->bs_stop_freq == 15) {
+ sbr->k[2] = 3*sbr->k[0];
+ } else {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
+ return -1;
+ }
+ sbr->k[2] = FFMIN(64, sbr->k[2]);
+
+ // Requirements (14496-3 sp04 p205)
+ if (sbr->sample_rate <= 32000) {
+ max_qmf_subbands = 48;
+ } else if (sbr->sample_rate == 44100) {
+ max_qmf_subbands = 35;
+ } else if (sbr->sample_rate >= 48000)
+ max_qmf_subbands = 32;
+
+ if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
+ return -1;
+ }
+
+ if (!spectrum->bs_freq_scale) {
+ unsigned int dk;
+ int k2diff;
+
+ dk = spectrum->bs_alter_scale + 1;
+ sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
+ if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
+ return -1;
+
+ for (k = 1; k <= sbr->n_master; k++)
+ sbr->f_master[k] = dk;
+
+ k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
+ if (k2diff < 0) {
+ sbr->f_master[1]--;
+ sbr->f_master[2]-= (k2diff < 1);
+ } else if (k2diff) {
+ sbr->f_master[sbr->n_master]++;
+ }
+
+ sbr->f_master[0] = sbr->k[0];
+ for (k = 1; k <= sbr->n_master; k++)
+ sbr->f_master[k] += sbr->f_master[k - 1];
+
+ } else {
+ int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
+ int two_regions, num_bands_0;
+ int vdk0_max, vdk1_min;
+ int16_t vk0[49];
+
+ if (49 * sbr->k[2] > 110 * sbr->k[0]) {
+ two_regions = 1;
+ sbr->k[1] = 2 * sbr->k[0];
+ } else {
+ two_regions = 0;
+ sbr->k[1] = sbr->k[2];
+ }
+
+ num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
+
+ if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
+ av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
+ return -1;
+ }
+
+ vk0[0] = 0;
+
+ make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
+
+ qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
+ vdk0_max = vk0[num_bands_0];
+
+ vk0[0] = sbr->k[0];
+ for (k = 1; k <= num_bands_0; k++) {
+ if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
+ av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
+ return -1;
+ }
+ vk0[k] += vk0[k-1];
+ }
+
+ if (two_regions) {
+ int16_t vk1[49];
+ float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
+ : 1.0f; // bs_alter_scale = {0,1}
+ int num_bands_1 = lrintf(half_bands * invwarp *
+ log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
+
+ make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
+
+ vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
+
+ if (vdk1_min < vdk0_max) {
+ int change;
+ qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
+ change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
+ vk1[1] += change;
+ vk1[num_bands_1] -= change;
+ }
+
+ qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
+
+ vk1[0] = sbr->k[1];
+ for (k = 1; k <= num_bands_1; k++) {
+ if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
+ av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
+ return -1;
+ }
+ vk1[k] += vk1[k-1];
+ }
+
+ sbr->n_master = num_bands_0 + num_bands_1;
+ if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
+ return -1;
+ memcpy(&sbr->f_master[0], vk0,
+ (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
+ memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
+ num_bands_1 * sizeof(sbr->f_master[0]));
+
+ } else {
+ sbr->n_master = num_bands_0;
+ if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
+ return -1;
+ memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
+ }
+ }
+
+ return 0;
+}
+
+/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
+static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
+{
+ int i, k, sb = 0;
+ int msb = sbr->k[0];
+ int usb = sbr->kx[1];
+ int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
+
+ sbr->num_patches = 0;
+
+ if (goal_sb < sbr->kx[1] + sbr->m[1]) {
+ for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
+ } else
+ k = sbr->n_master;
+
+ do {
+ int odd = 0;
+ for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
+ sb = sbr->f_master[i];
+ odd = (sb + sbr->k[0]) & 1;
+ }
+
+ sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
+ sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
+
+ if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
+ usb = sb;
+ msb = sb;
+ sbr->num_patches++;
+ } else
+ msb = sbr->kx[1];
+
+ if (sbr->f_master[k] - sb < 3)
+ k = sbr->n_master;
+ } while (sb != sbr->kx[1] + sbr->m[1]);
+
+ if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
+ sbr->num_patches--;
+
+ // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
+ // However the Coding Technologies decoder check uses 6 patches
+ if (sbr->num_patches > 6) {
+ av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
+ return -1;
+ }
+
+ return 0;
+}
+
+/// Derived Frequency Band Tables (14496-3 sp04 p197)
+static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
+{
+ int k, temp;
+
+ sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
+ sbr->n[0] = (sbr->n[1] + 1) >> 1;
+
+ memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
+ (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
+ sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
+ sbr->kx[1] = sbr->f_tablehigh[0];
+
+ // Requirements (14496-3 sp04 p205)
+ if (sbr->kx[1] + sbr->m[1] > 64) {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
+ return -1;
+ }
+ if (sbr->kx[1] > 32) {
+ av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
+ return -1;
+ }
+
+ sbr->f_tablelow[0] = sbr->f_tablehigh[0];
+ temp = sbr->n[1] & 1;
+ for (k = 1; k <= sbr->n[0]; k++)
+ sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
+
+ sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
+ log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
+ if (sbr->n_q > 5) {
+ av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
+ return -1;
+ }
+
+ sbr->f_tablenoise[0] = sbr->f_tablelow[0];
+ temp = 0;
+ for (k = 1; k <= sbr->n_q; k++) {
+ temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
+ sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
+ }
+
+ if (sbr_hf_calc_npatches(ac, sbr) < 0)
+ return -1;
+
+ sbr_make_f_tablelim(sbr);
+
+ sbr->data[0].f_indexnoise = 0;
+ sbr->data[1].f_indexnoise = 0;
+
+ return 0;
+}
+
+static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
+ int elements)
+{
+ int i;
+ for (i = 0; i < elements; i++) {
+ vec[i] = get_bits1(gb);
+ }
+}
+
+/** ceil(log2(index+1)) */
+static const int8_t ceil_log2[] = {
+ 0, 1, 2, 2, 3, 3,
+};
+
+static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
+ GetBitContext *gb, SBRData *ch_data)
+{
+ int i;
+
+ ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env[1]];
+ ch_data->bs_num_env[0] = ch_data->bs_num_env[1];
+ ch_data->bs_amp_res = sbr->bs_amp_res_header;
+
+ switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
+ case FIXFIX:
+ ch_data->bs_num_env[1] = 1 << get_bits(gb, 2);
+ if (ch_data->bs_num_env[1] == 1)
+ ch_data->bs_amp_res = 0;
+
+ ch_data->bs_freq_res[1] = get_bits1(gb);
+ for (i = 1; i < ch_data->bs_num_env[1]; i++)
+ ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
+ break;
+ case FIXVAR:
+ ch_data->bs_var_bord[1] = get_bits(gb, 2);
+ ch_data->bs_num_rel[1] = get_bits(gb, 2);
+ ch_data->bs_num_env[1] = ch_data->bs_num_rel[1] + 1;
+
+ for (i = 0; i < ch_data->bs_num_rel[1]; i++)
+ ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
+
+ ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
+
+ for (i = 0; i < ch_data->bs_num_env[1]; i++)
+ ch_data->bs_freq_res[ch_data->bs_num_env[1] - i] = get_bits1(gb);
+ break;
+ case VARFIX:
+ ch_data->bs_var_bord[0] = get_bits(gb, 2);
+ ch_data->bs_num_rel[0] = get_bits(gb, 2);
+ ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + 1;
+
+ for (i = 0; i < ch_data->bs_num_rel[0]; i++)
+ ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
+
+ ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
+
+ get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
+ break;
+ case VARVAR:
+ ch_data->bs_var_bord[0] = get_bits(gb, 2);
+ ch_data->bs_var_bord[1] = get_bits(gb, 2);
+ ch_data->bs_num_rel[0] = get_bits(gb, 2);
+ ch_data->bs_num_rel[1] = get_bits(gb, 2);
+ ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + ch_data->bs_num_rel[1] + 1;
+
+ for (i = 0; i < ch_data->bs_num_rel[0]; i++)
+ ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
+ for (i = 0; i < ch_data->bs_num_rel[1]; i++)
+ ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
+
+ ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
+
+ get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
+ break;
+ }
+
+ if (ch_data->bs_frame_class == FIXFIX && ch_data->bs_num_env[1] > 4) {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
+ ch_data->bs_num_env[1]);
+ return -1;
+ }
+ if (ch_data->bs_frame_class == VARVAR && ch_data->bs_num_env[1] > 5) {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
+ ch_data->bs_num_env[1]);
+ return -1;
+ }
+
+ ch_data->bs_num_noise = (ch_data->bs_num_env[1] > 1) + 1;
+
+ return 0;
+}
+
+static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
+ //These variables are saved from the previous frame rather than copied
+ dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env[1]];
+ dst->bs_num_env[0] = dst->bs_num_env[1];
+
+ //These variables are read from the bitstream and therefore copied
+ memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
+ memcpy(dst->bs_num_env+1, src->bs_num_env+1, sizeof(dst->bs_num_env)- sizeof(*dst->bs_num_env));
+ memcpy(dst->bs_var_bord, src->bs_var_bord, sizeof(dst->bs_var_bord));
+ memcpy(dst->bs_rel_bord, src->bs_rel_bord, sizeof(dst->bs_rel_bord));
+ memcpy(dst->bs_num_rel, src->bs_num_rel, sizeof(dst->bs_rel_bord));
+ dst->bs_amp_res = src->bs_amp_res;
+ dst->bs_num_noise = src->bs_num_noise;
+ dst->bs_pointer = src->bs_pointer;
+ dst->bs_frame_class = src->bs_frame_class;
+}
+
+/// Read how the envelope and noise floor data is delta coded
+static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
+ SBRData *ch_data)
+{
+ get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env[1]);
+ get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
+}
+
+/// Read inverse filtering data
+static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
+ SBRData *ch_data)
+{
+ int i;
+
+ memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
+ for (i = 0; i < sbr->n_q; i++)
+ ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
+}
+
+static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
+ SBRData *ch_data, int ch)
+{
+ int bits;
+ int i, j, k;
+ VLC_TYPE (*t_huff)[2], (*f_huff)[2];
+ int t_lav, f_lav;
+ const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
+ const int odd = sbr->n[1] & 1;
+
+ if (sbr->bs_coupling && ch) {
+ if (ch_data->bs_amp_res) {
+ bits = 5;
+ t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
+ t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
+ f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
+ f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
+ } else {
+ bits = 6;
+ t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
+ t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
+ f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
+ f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
+ }
+ } else {
+ if (ch_data->bs_amp_res) {
+ bits = 6;
+ t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
+ t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
+ f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
+ f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
+ } else {
+ bits = 7;
+ t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
+ t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
+ f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
+ f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
+ }
+ }
+
+ for (i = 0; i < ch_data->bs_num_env[1]; i++) {
+ if (ch_data->bs_df_env[i]) {
+ // bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame
+ if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
+ for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
+ ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
+ } else if (ch_data->bs_freq_res[i + 1]) {
+ for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
+ k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
+ ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
+ }
+ } else {
+ for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
+ k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
+ ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
+ }
+ }
+ } else {
+ ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
+ for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
+ ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
+ }
+ }
+
+ //assign 0th elements of env_facs from last elements
+ memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env[1]],
+ sizeof(ch_data->env_facs[0]));
+}
+
+static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
+ SBRData *ch_data, int ch)
+{
+ int i, j;
+ VLC_TYPE (*t_huff)[2], (*f_huff)[2];
+ int t_lav, f_lav;
+ int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
+
+ if (sbr->bs_coupling && ch) {
+ t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
+ t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
+ f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
+ f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
+ } else {
+ t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
+ t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
+ f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
+ f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
+ }
+
+ for (i = 0; i < ch_data->bs_num_noise; i++) {
+ if (ch_data->bs_df_noise[i]) {
+ for (j = 0; j < sbr->n_q; j++)
+ ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
+ } else {
+ ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
+ for (j = 1; j < sbr->n_q; j++)
+ ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
+ }
+ }
+
+ //assign 0th elements of noise_facs from last elements
+ memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
+ sizeof(ch_data->noise_facs[0]));
+}
+
+static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
+ GetBitContext *gb,
+ int bs_extension_id, int *num_bits_left)
+{
+//TODO - implement ps_data for parametric stereo parsing
+ switch (bs_extension_id) {
+ case EXTENSION_ID_PS:
+#if 0
+ *num_bits_left -= ff_ps_data(gb, ps);
+#else
+ av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
+ skip_bits_long(gb, *num_bits_left); // bs_fill_bits
+ *num_bits_left = 0;
+#endif
+ break;
+ default:
+ av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
+ skip_bits_long(gb, *num_bits_left); // bs_fill_bits
+ *num_bits_left = 0;
+ break;
+ }
+}
+
+static void read_sbr_single_channel_element(AACContext *ac,
+ SpectralBandReplication *sbr,
+ GetBitContext *gb)
+{
+ if (get_bits1(gb)) // bs_data_extra
+ skip_bits(gb, 4); // bs_reserved
+
+ read_sbr_grid(ac, sbr, gb, &sbr->data[0]);
+ read_sbr_dtdf(sbr, gb, &sbr->data[0]);
+ read_sbr_invf(sbr, gb, &sbr->data[0]);
+ read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
+ read_sbr_noise(sbr, gb, &sbr->data[0], 0);
+
+ if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
+ get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
+}
+
+static void read_sbr_channel_pair_element(AACContext *ac,
+ SpectralBandReplication *sbr,
+ GetBitContext *gb)
+{
+ if (get_bits1(gb)) // bs_data_extra
+ skip_bits(gb, 8); // bs_reserved
+
+ if ((sbr->bs_coupling = get_bits1(gb))) {
+ read_sbr_grid(ac, sbr, gb, &sbr->data[0]);
+ copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
+ read_sbr_dtdf(sbr, gb, &sbr->data[0]);
+ read_sbr_dtdf(sbr, gb, &sbr->data[1]);
+ read_sbr_invf(sbr, gb, &sbr->data[0]);
+ memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
+ memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
+ read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
+ read_sbr_noise(sbr, gb, &sbr->data[0], 0);
+ read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
+ read_sbr_noise(sbr, gb, &sbr->data[1], 1);
+ } else {
+ read_sbr_grid(ac, sbr, gb, &sbr->data[0]);
+ read_sbr_grid(ac, sbr, gb, &sbr->data[1]);
+ read_sbr_dtdf(sbr, gb, &sbr->data[0]);
+ read_sbr_dtdf(sbr, gb, &sbr->data[1]);
+ read_sbr_invf(sbr, gb, &sbr->data[0]);
+ read_sbr_invf(sbr, gb, &sbr->data[1]);
+ read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
+ read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
+ read_sbr_noise(sbr, gb, &sbr->data[0], 0);
+ read_sbr_noise(sbr, gb, &sbr->data[1], 1);
+ }
+
+ if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
+ get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
+ if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
+ get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
+}
+
+static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
+ GetBitContext *gb, int id_aac)
+{
+ unsigned int cnt = get_bits_count(gb);
+
+ if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
+ read_sbr_single_channel_element(ac, sbr, gb);
+ } else if (id_aac == TYPE_CPE) {
+ read_sbr_channel_pair_element(ac, sbr, gb);
+ } else {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
+ sbr->start = 0;
+ return get_bits_count(gb) - cnt;
+ }
+ if (get_bits1(gb)) { // bs_extended_data
+ int num_bits_left = get_bits(gb, 4); // bs_extension_size
+ if (num_bits_left == 15)
+ num_bits_left += get_bits(gb, 8); // bs_esc_count
+
+ num_bits_left <<= 3;
+ while (num_bits_left > 7) {
+ num_bits_left -= 2;
+ read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
+ }
+ }
+
+ return get_bits_count(gb) - cnt;
+}
+
+static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
+{
+ int err;
+ err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
+ if (err >= 0)
+ err = sbr_make_f_derived(ac, sbr);
+ if (err < 0) {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "SBR reset failed. Switching SBR to pure upsampling mode.\n");
+ sbr->start = 0;
+ }
+}
+
+/**
+ * Decode Spectral Band Replication extension data; reference: table 4.55.
+ *
+ * @param crc flag indicating the presence of CRC checksum
+ * @param cnt length of TYPE_FIL syntactic element in bytes
+ *
+ * @return Returns number of bytes consumed from the TYPE_FIL element.
+ */
+int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
+ GetBitContext *gb_host, int crc, int cnt, int id_aac)
+{
+ unsigned int num_sbr_bits = 0, num_align_bits;
+ unsigned bytes_read;
+ GetBitContext gbc = *gb_host, *gb = &gbc;
+ skip_bits_long(gb_host, cnt*8 - 4);
+
+ sbr->reset = 0;
+
+ if (!sbr->sample_rate)
+ sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
+ if (!ac->m4ac.ext_sample_rate)
+ ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
+
+ if (crc) {
+ skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
+ num_sbr_bits += 10;
+ }
+
+ //Save some state from the previous frame.
+ sbr->kx[0] = sbr->kx[1];
+ sbr->m[0] = sbr->m[1];
+
+ num_sbr_bits++;
+ if (get_bits1(gb)) // bs_header_flag
+ num_sbr_bits += read_sbr_header(sbr, gb);
+
+ if (sbr->reset)
+ sbr_reset(ac, sbr);
+
+ if (sbr->start)
+ num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
+
+ num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
+ bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
+
+ if (bytes_read > cnt) {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
+ }
+ return cnt;
+}
+
+/// Time/frequency Grid (14496-3 sp04 p200)
+static int sbr_time_freq_grid(AACContext *ac, SpectralBandReplication *sbr,
+ SBRData *ch_data, int ch)
+{
+ int abs_bord_lead = ch_data->bs_frame_class >= 2 ? ch_data->bs_var_bord[0] : 0;
+ // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
+ int abs_bord_trail = (ch_data->bs_frame_class & 1 ? ch_data->bs_var_bord[1] : 0) + 16;
+ int n_rel_lead;
+ int i;
+
+ if (ch_data->bs_frame_class == FIXFIX) {
+ n_rel_lead = ch_data->bs_num_env[1] - 1;
+ } else if (ch_data->bs_frame_class == FIXVAR) {
+ n_rel_lead = 0;
+ } else if (ch_data->bs_frame_class < 4) { // VARFIX or VARVAR
+ n_rel_lead = ch_data->bs_num_rel[0];
+ } else {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "Invalid bs_frame_class for SBR: %d\n", ch_data->bs_frame_class);
+ return -1;
+ }
+
+ ch_data->t_env_num_env_old = ch_data->t_env[ch_data->bs_num_env[0]];
+ ch_data->t_env[0] = abs_bord_lead;
+ ch_data->t_env[ch_data->bs_num_env[1]] = abs_bord_trail;
+
+ if (ch_data->bs_frame_class == FIXFIX) {
+ int temp = (abs_bord_trail + (ch_data->bs_num_env[1] >> 1)) /
+ ch_data->bs_num_env[1];
+ for (i = 0; i < n_rel_lead; i++)
+ ch_data->t_env[i + 1] = ch_data->t_env[i] + temp;
+ } else if (ch_data->bs_frame_class > 1) { // VARFIX or VARVAR
+ for (i = 0; i < n_rel_lead; i++)
+ ch_data->t_env[i + 1] = ch_data->t_env[i] + ch_data->bs_rel_bord[0][i];
+ } else { // FIXVAR
+ for (i = 0; i < n_rel_lead; i++)
+ ch_data->t_env[i + 1] = abs_bord_lead;
+ }
+
+ if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
+ for (i = ch_data->bs_num_env[1] - 1; i > n_rel_lead; i--)
+ ch_data->t_env[i] = ch_data->t_env[i + 1] -
+ ch_data->bs_rel_bord[1][ch_data->bs_num_env[1] - 1 - i];
+ } else { // FIXFIX or VARFIX
+ for (i = n_rel_lead; i < ch_data->bs_num_env[1]; i++)
+ ch_data->t_env[i + 1] = abs_bord_trail;
+ }
+
+ ch_data->t_q[0] = ch_data->t_env[0];
+ if (ch_data->bs_num_noise > 1) { // typo in spec bases this on bs_num_env...
+ unsigned int idx;
+ if (ch_data->bs_frame_class == FIXFIX) {
+ idx = ch_data->bs_num_env[1] >> 1;
+ } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
+ idx = ch_data->bs_num_env[1] - FFMAX(ch_data->bs_pointer - 1, 1);
+ } else { // VARFIX
+ if (!ch_data->bs_pointer)
+ idx = 1;
+ else if (ch_data->bs_pointer == 1)
+ idx = ch_data->bs_num_env[1] - 1;
+ else // bs_pointer > 1
+ idx = ch_data->bs_pointer - 1;
+ }
+ ch_data->t_q[1] = ch_data->t_env[idx];
+ ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env[1]];
+ } else
+ ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env[1]];
+
+ return 0;
+}
+
+/// Dequantization and stereo decoding (14496-3 sp04 p203)
+static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
+{
+ int k, e;
+ int ch;
+
+ if (id_aac == TYPE_CPE && sbr->bs_coupling) {
+ float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
+ float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
+ for (e = 1; e <= sbr->data[0].bs_num_env[1]; e++) {
+ for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
+ float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
+ float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
+ float fac = temp1 / (1.0f + temp2);
+ sbr->data[0].env_facs[e][k] = fac;
+ sbr->data[1].env_facs[e][k] = fac * temp2;
+ }
+ }
+ for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
+ for (k = 0; k < sbr->n_q; k++) {
+ float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
+ float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
+ float fac = temp1 / (1.0f + temp2);
+ sbr->data[0].noise_facs[e][k] = fac;
+ sbr->data[1].noise_facs[e][k] = fac * temp2;
+ }
+ }
+ } else { // SCE or one non-coupled CPE
+ for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
+ float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
+ for (e = 1; e <= sbr->data[ch].bs_num_env[1]; e++)
+ for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
+ sbr->data[ch].env_facs[e][k] =
+ exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
+ for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
+ for (k = 0; k < sbr->n_q; k++)
+ sbr->data[ch].noise_facs[e][k] =
+ exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
+ }
+ }
+}
+
+/**
+ * Analysis QMF Bank (14496-3 sp04 p206)
+ *
+ * @param x pointer to the beginning of the first sample window
+ * @param W array of complex-valued samples split into subbands
+ */
+static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
+ float z[320], float W[2][32][32][2],
+ float bias, float scale)
+{
+ int i, k;
+ memcpy(W[0], W[1], sizeof(W[0]));
+ memcpy(x , x+1024, (320-32)*sizeof(x[0]));
+ if (scale != 1.0f || bias != 0.0f)
+ for (i = 0; i < 1024; i++)
+ x[288 + i] = (in[i] - bias) * scale;
+ else
+ memcpy(x+288, in, 1024*sizeof(*x));
+ for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
+ // are not supported
+ float re, im;
+ dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
+ for (k = 0; k < 64; k++) {
+ float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
+ z[k] = f * analysis_cos_pre[k];
+ z[k+64] = f;
+ }
+ ff_rdft_calc(rdft, z);
+ re = z[0] * 0.5f;
+ im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
+ W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
+ W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
+ for (k = 1; k < 32; k++) {
+ re = z[2*k ] - re;
+ im = z[2*k+1] - im;
+ W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
+ W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
+ }
+ x += 32;
+ }
+}
+
+/**
+ * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
+ * (14496-3 sp04 p206)
+ */
+static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
+ float *out, float X[2][32][64],
+ float mdct_buf[2][64],
+ float *v0, int *v_off, const unsigned int div,
+ float bias, float scale)
+{
+ int i, n;
+ const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
+ int scale_and_bias = scale != 1.0f || bias != 0.0f;
+ float *v;
+ for (i = 0; i < 32; i++) {
+ if (*v_off == 0) {
+ int saved_samples = (1280 - 128) >> div;
+ memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
+ *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
+ } else {
+ *v_off -= 128 >> div;
+ }
+ v = v0 + *v_off;
+ for (n = 1; n < 64 >> div; n+=2) {
+ X[1][i][n] = -X[1][i][n];
+ }
+ if (div) {
+ memset(X[0][i]+32, 0, 32*sizeof(float));
+ memset(X[1][i]+32, 0, 32*sizeof(float));
+ }
+ ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
+ ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
+ if (div) {
+ for (n = 0; n < 32; n++) {
+ v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
+ v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
+ }
+ } else {
+ for (n = 0; n < 64; n++) {
+ v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
+ v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
+ }
+ }
+ dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
+ dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
+ dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
+ dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
+ dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
+ dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
+ dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
+ dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
+ dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
+ dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
+ if (scale_and_bias)
+ for (n = 0; n < 64 >> div; n++)
+ out[n] = out[n] * scale + bias;
+ out += 64 >> div;
+ }
+}
+
+static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
+{
+ int i;
+ float real_sum = 0.0f;
+ float imag_sum = 0.0f;
+ if (lag) {
+ for (i = 1; i < 38; i++) {
+ real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
+ imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
+ }
+ phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
+ phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
+ if (lag == 1) {
+ phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
+ phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
+ }
+ } else {
+ for (i = 1; i < 38; i++) {
+ real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
+ }
+ phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
+ phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
+ }
+}
+
+/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
+ * (14496-3 sp04 p214)
+ * Warning: This routine does not seem numerically stable.
+ */
+static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
+ const float X_low[32][40][2], int k0)
+{
+ int k;
+ for (k = 0; k < k0; k++) {
+ float phi[3][2][2], dk;
+
+ autocorrelate(X_low[k], phi, 0);
+ autocorrelate(X_low[k], phi, 1);
+ autocorrelate(X_low[k], phi, 2);
+
+ dk = phi[2][1][0] * phi[1][0][0] -
+ (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
+
+ if (!dk) {
+ alpha1[k][0] = 0;
+ alpha1[k][1] = 0;
+ } else {
+ float temp_real, temp_im;
+ temp_real = phi[0][0][0] * phi[1][1][0] -
+ phi[0][0][1] * phi[1][1][1] -
+ phi[0][1][0] * phi[1][0][0];
+ temp_im = phi[0][0][0] * phi[1][1][1] +
+ phi[0][0][1] * phi[1][1][0] -
+ phi[0][1][1] * phi[1][0][0];
+
+ alpha1[k][0] = temp_real / dk;
+ alpha1[k][1] = temp_im / dk;
+ }
+
+ if (!phi[1][0][0]) {
+ alpha0[k][0] = 0;
+ alpha0[k][1] = 0;
+ } else {
+ float temp_real, temp_im;
+ temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
+ alpha1[k][1] * phi[1][1][1];
+ temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
+ alpha1[k][0] * phi[1][1][1];
+
+ alpha0[k][0] = -temp_real / phi[1][0][0];
+ alpha0[k][1] = -temp_im / phi[1][0][0];
+ }
+
+ if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
+ alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
+ alpha1[k][0] = 0;
+ alpha1[k][1] = 0;
+ alpha0[k][0] = 0;
+ alpha0[k][1] = 0;
+ }
+ }
+}
+
+/// Chirp Factors (14496-3 sp04 p214)
+static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
+{
+ int i;
+ float new_bw;
+ static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
+
+ for (i = 0; i < sbr->n_q; i++) {
+ if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
+ new_bw = 0.6f;
+ } else
+ new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
+
+ if (new_bw < ch_data->bw_array[i]) {
+ new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
+ } else
+ new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
+ ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
+ }
+}
+
+/// Generate the subband filtered lowband
+static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
+ float X_low[32][40][2], const float W[2][32][32][2])
+{
+ int i, k;
+ const int t_HFGen = 8;
+ const int i_f = 32;
+ memset(X_low, 0, 32*sizeof(*X_low));
+ for (k = 0; k < sbr->kx[1]; k++) {
+ for (i = t_HFGen; i < i_f + t_HFGen; i++) {
+ X_low[k][i][0] = W[1][i - t_HFGen][k][0];
+ X_low[k][i][1] = W[1][i - t_HFGen][k][1];
+ }
+ }
+ for (k = 0; k < sbr->kx[0]; k++) {
+ for (i = 0; i < t_HFGen; i++) {
+ X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
+ X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
+ }
+ }
+ return 0;
+}
+
+/// High Frequency Generator (14496-3 sp04 p215)
+static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
+ float X_high[64][40][2], const float X_low[32][40][2],
+ const float (*alpha0)[2], const float (*alpha1)[2],
+ const float bw_array[5], const uint8_t *t_env,
+ int bs_num_env)
+{
+ int i, j, x;
+ int g = 0;
+ int k = sbr->kx[1];
+ for (j = 0; j < sbr->num_patches; j++) {
+ for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
+ float alpha[4];
+ const int p = sbr->patch_start_subband[j] + x;
+ while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
+ g++;
+ g--;
+
+ if (g < 0) {
+ av_log(ac->avccontext, AV_LOG_ERROR,
+ "ERROR : no subband found for frequency %d\n", k);
+ return -1;
+ }
+
+ alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
+ alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
+ alpha[2] = alpha0[p][0] * bw_array[g];
+ alpha[3] = alpha0[p][1] * bw_array[g];
+
+ for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
+ const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
+ X_high[k][idx][0] =
+ X_low[p][idx - 2][0] * alpha[0] -
+ X_low[p][idx - 2][1] * alpha[1] +
+ X_low[p][idx - 1][0] * alpha[2] -
+ X_low[p][idx - 1][1] * alpha[3] +
+ X_low[p][idx][0];
+ X_high[k][idx][1] =
+ X_low[p][idx - 2][1] * alpha[0] +
+ X_low[p][idx - 2][0] * alpha[1] +
+ X_low[p][idx - 1][1] * alpha[2] +
+ X_low[p][idx - 1][0] * alpha[3] +
+ X_low[p][idx][1];
+ }
+ }
+ }
+ if (k < sbr->m[1] + sbr->kx[1])
+ memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
+
+ return 0;
+}
+
+/// Generate the subband filtered lowband
+static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
+ const float X_low[32][40][2], const float Y[2][38][64][2],
+ int ch)
+{
+ int k, i;
+ const int i_f = 32;
+ const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
+ memset(X, 0, 2*sizeof(*X));
+ for (k = 0; k < sbr->kx[0]; k++) {
+ for (i = 0; i < i_Temp; i++) {
+ X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
+ X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
+ }
+ }
+ for (; k < sbr->kx[0] + sbr->m[0]; k++) {
+ for (i = 0; i < i_Temp; i++) {
+ X[0][i][k] = Y[0][i + i_f][k][0];
+ X[1][i][k] = Y[0][i + i_f][k][1];
+ }
+ }
+
+ for (k = 0; k < sbr->kx[1]; k++) {
+ for (i = i_Temp; i < i_f; i++) {
+ X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
+ X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
+ }
+ }
+ for (; k < sbr->kx[1] + sbr->m[1]; k++) {
+ for (i = i_Temp; i < i_f; i++) {
+ X[0][i][k] = Y[1][i][k][0];
+ X[1][i][k] = Y[1][i][k][1];
+ }
+ }
+ return 0;
+}
+
+/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
+ * (14496-3 sp04 p217)
+ */
+static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
+ SBRData *ch_data, int e_a[2])
+{
+ int e, i, m;
+
+ e_a[0] = -(e_a[1] != ch_data->bs_num_env[0]); // l_APrev
+ e_a[1] = -1;
+ if ((ch_data->bs_frame_class & 1) && ch_data->bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
+ e_a[1] = ch_data->bs_num_env[1] + 1 - ch_data->bs_pointer;
+ } else if ((ch_data->bs_frame_class == 2) && (ch_data->bs_pointer > 1)) // VARFIX and bs_pointer > 1
+ e_a[1] = ch_data->bs_pointer - 1;
+
+ memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
+ for (e = 0; e < ch_data->bs_num_env[1]; e++) {
+ const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
+ uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
+ int k;
+
+ for (i = 0; i < ilim; i++)
+ for (m = table[i]; m < table[i + 1]; m++)
+ sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
+
+ // ch_data->bs_num_noise > 1 => 2 noise floors
+ k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
+ for (i = 0; i < sbr->n_q; i++)
+ for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
+ sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
+
+ for (i = 0; i < sbr->n[1]; i++) {
+ if (ch_data->bs_add_harmonic_flag) {
+ const unsigned int m_midpoint =
+ (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
+
+ ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
+ (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
+ }
+ }
+
+ for (i = 0; i < ilim; i++) {
+ int additional_sinusoid_present = 0;
+ for (m = table[i]; m < table[i + 1]; m++) {
+ if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
+ additional_sinusoid_present = 1;
+ break;
+ }
+ }
+ memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
+ (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
+ }
+ }
+
+ memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env[1]], sizeof(ch_data->s_indexmapped[0]));
+}
+
+/// Estimation of current envelope (14496-3 sp04 p218)
+static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
+ SpectralBandReplication *sbr, SBRData *ch_data)
+{
+ int e, i, m;
+
+ if (sbr->bs_interpol_freq) {
+ for (e = 0; e < ch_data->bs_num_env[1]; e++) {
+ const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
+ int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
+ int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
+
+ for (m = 0; m < sbr->m[1]; m++) {
+ float sum = 0.0f;
+
+ for (i = ilb; i < iub; i++) {
+ sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
+ X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
+ }
+ e_curr[e][m] = sum * recip_env_size;
+ }
+ }
+ } else {
+ int k, p;
+
+ for (e = 0; e < ch_data->bs_num_env[1]; e++) {
+ const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
+ int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
+ int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
+ const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
+
+ for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
+ float sum = 0.0f;
+ const int den = env_size * (table[p + 1] - table[p]);
+
+ for (k = table[p]; k < table[p + 1]; k++) {
+ for (i = ilb; i < iub; i++) {
+ sum += X_high[k][i][0] * X_high[k][i][0] +
+ X_high[k][i][1] * X_high[k][i][1];
+ }
+ }
+ sum /= den;
+ for (k = table[p]; k < table[p + 1]; k++) {
+ e_curr[e][k - sbr->kx[1]] = sum;
+ }
+ }
+ }
+ }
+}
+
+/**
+ * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
+ * and Calculation of gain (14496-3 sp04 p219)
+ */
+static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
+ SBRData *ch_data, const int e_a[2])
+{
+ int e, k, m;
+ // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
+ static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
+
+ for (e = 0; e < ch_data->bs_num_env[1]; e++) {
+ int delta = !((e == e_a[1]) || (e == e_a[0]));
+ for (k = 0; k < sbr->n_lim; k++) {
+ float gain_boost, gain_max;
+ float sum[2] = { 0.0f, 0.0f };
+ for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
+ const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
+ sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
+ sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
+ if (!sbr->s_mapped[e][m]) {
+ sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
+ ((1.0f + sbr->e_curr[e][m]) *
+ (1.0f + sbr->q_mapped[e][m] * delta)));
+ } else {
+ sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
+ ((1.0f + sbr->e_curr[e][m]) *
+ (1.0f + sbr->q_mapped[e][m])));
+ }
+ }
+ for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
+ sum[0] += sbr->e_origmapped[e][m];
+ sum[1] += sbr->e_curr[e][m];
+ }
+ gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
+ gain_max = FFMIN(100000, gain_max);
+ for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
+ float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
+ sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
+ sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
+ }
+ sum[0] = sum[1] = 0.0f;
+ for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
+ sum[0] += sbr->e_origmapped[e][m];
+ sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
+ + sbr->s_m[e][m] * sbr->s_m[e][m]
+ + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
+ }
+ gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
+ gain_boost = FFMIN(1.584893192, gain_boost);
+ for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
+ sbr->gain[e][m] *= gain_boost;
+ sbr->q_m[e][m] *= gain_boost;
+ sbr->s_m[e][m] *= gain_boost;
+ }
+ }
+ }
+}
+
+/// Assembling HF Signals (14496-3 sp04 p220)
+static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
+ SpectralBandReplication *sbr, SBRData *ch_data,
+ const int e_a[2])
+{
+ int e, i, j, m;
+ const int h_SL = 4 * !sbr->bs_smoothing_mode;
+ const int kx = sbr->kx[1];
+ const int m_max = sbr->m[1];
+ static const float h_smooth[5] = {
+ 0.33333333333333,
+ 0.30150283239582,
+ 0.21816949906249,
+ 0.11516383427084,
+ 0.03183050093751,
+ };
+ static const int8_t phi[2][4] = {
+ { 1, 0, -1, 0}, // real
+ { 0, 1, 0, -1}, // imaginary
+ };
+ float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
+ int indexnoise = ch_data->f_indexnoise;
+ int indexsine = ch_data->f_indexsine;
+ memcpy(Y[0], Y[1], sizeof(Y[0]));
+
+ if (sbr->reset) {
+ for (i = 0; i < h_SL; i++) {
+ memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
+ memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
+ }
+ } else if (h_SL) {
+ memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
+ memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
+ }
+
+ for (e = 0; e < ch_data->bs_num_env[1]; e++) {
+ for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
+ memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
+ memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
+ }
+ }
+
+ for (e = 0; e < ch_data->bs_num_env[1]; e++) {
+ for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
+ int phi_sign = (1 - 2*(kx & 1));
+
+ if (h_SL && e != e_a[0] && e != e_a[1]) {
+ for (m = 0; m < m_max; m++) {
+ const int idx1 = i + h_SL;
+ float g_filt = 0.0f;
+ for (j = 0; j <= h_SL; j++)
+ g_filt += g_temp[idx1 - j][m] * h_smooth[j];
+ Y[1][i][m + kx][0] =
+ X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
+ Y[1][i][m + kx][1] =
+ X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
+ }
+ } else {
+ for (m = 0; m < m_max; m++) {
+ const float g_filt = g_temp[i + h_SL][m];
+ Y[1][i][m + kx][0] =
+ X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
+ Y[1][i][m + kx][1] =
+ X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
+ }
+ }
+
+ if (e != e_a[0] && e != e_a[1]) {
+ for (m = 0; m < m_max; m++) {
+ indexnoise = (indexnoise + 1) & 0x1ff;
+ if (sbr->s_m[e][m]) {
+ Y[1][i][m + kx][0] +=
+ sbr->s_m[e][m] * phi[0][indexsine];
+ Y[1][i][m + kx][1] +=
+ sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
+ } else {
+ float q_filt;
+ if (h_SL) {
+ const int idx1 = i + h_SL;
+ q_filt = 0.0f;
+ for (j = 0; j <= h_SL; j++)
+ q_filt += q_temp[idx1 - j][m] * h_smooth[j];
+ } else {
+ q_filt = q_temp[i][m];
+ }
+ Y[1][i][m + kx][0] +=
+ q_filt * sbr_noise_table[indexnoise][0];
+ Y[1][i][m + kx][1] +=
+ q_filt * sbr_noise_table[indexnoise][1];
+ }
+ phi_sign = -phi_sign;
+ }
+ } else {
+ indexnoise = (indexnoise + m_max) & 0x1ff;
+ for (m = 0; m < m_max; m++) {
+ Y[1][i][m + kx][0] +=
+ sbr->s_m[e][m] * phi[0][indexsine];
+ Y[1][i][m + kx][1] +=
+ sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
+ phi_sign = -phi_sign;
+ }
+ }
+ indexsine = (indexsine + 1) & 3;
+ }
+ }
+ ch_data->f_indexnoise = indexnoise;
+ ch_data->f_indexsine = indexsine;
+}
+
+void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
+{
+ int ch;
+
+ if (sbr->start) {
+ for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
+ sbr_time_freq_grid(ac, sbr, &sbr->data[ch], ch);
+ }
+ sbr_dequant(sbr, id_aac);
+ }
+}
+
+void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
+ const float* in, float* out)
+{
+ int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
+
+ /* decode channel */
+ sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
+ (float*)sbr->qmf_filter_scratch,
+ sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
+ sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
+ if (sbr->start) {
+ sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
+ sbr_chirp(sbr, &sbr->data[ch]);
+ sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
+ sbr->data[ch].bw_array, sbr->data[ch].t_env,
+ sbr->data[ch].bs_num_env[1]);
+
+ // hf_adj
+ sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
+ sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
+ sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
+ sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
+ sbr->data[ch].e_a);
+ }
+
+ /* synthesis */
+ sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
+ sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
+ sbr->data[ch].synthesis_filterbank_samples,
+ &sbr->data[ch].synthesis_filterbank_samples_offset,
+ downsampled,
+ ac->add_bias, -1024 * ac->sf_scale);
+}