summaryrefslogtreecommitdiff
path: root/doc/UsersGuide/Infrastructure.tex
blob: 3d54aeda6410cb9007792008fee4e5192fb79e84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
\begin{cactuspart}{3}{Infrastructure Thorn Writer's Guide}{$RCSfile$}{$Revision$}
\renewcommand{\thepage}{\Alph{part}\arabic{page}}

\chapter{Introduction} 

\begin{itemize}
 \item{} Concepts and terminology (Overloading and registration of functions)
 \item{} The cGH structure --- what it is and how to use it
 \item{} Extending the cGH structure
 \item{} Querying group and variable information
 \item{} Providing an IO layer
 \item{} Providing a communication layer
 \item{} Providing a reduction operator
 \item{} Providing an interpolation operator
 \item{} Overloadable functions
\end{itemize}

\chapter{Concepts and Terminology}
\label{chap:cote}

\section{Overloading and Registration}

The flesh defines a core API which guarantees the presence of a set of 
functions.  Although the flesh guarantees the presence of these functions,
they can be provided by thorns.  Thorns do this either by the {\em overloading} 
or the {\em registration} of functions.

\subsection{Overloading}

Some functions can only be provided by one thorn.  The first thorn to
{\em overload} this function succeeds, and any later attempt to overload
the function fails.  For each overloadable function there is a function
with a name something like {\tt CCTK\_Overload...} which is passed the
function pointer.

\subsection{Registration}

Some functions may be provided by several thorns.  The thorns {\em register}
their function with the flesh, and when the flesh-provided function is called, 
the flesh calls all the registered functions.

\section{GH Extensions}

A GH extension is a way to associate data with each cGH.  This data should be data 
that is required to be associated with a particular GH by a thorn.

Each GH extension is given a unique handle.

\section{IO Methods}

An IO method is a distinct way to output data.  Each IO method has a unique name,
and the flesh-provided IO functions operate on all registered IO methods.

\chapter{GH Extensions}

A GH extension is created by calling {\tt CCTK\_RegisterGHExtension} , with the 
name of the extension.  This returns a unique handle that identifies the extension.
(This handle can be retrieved at any time by a call to {\tt CCTK\_GHExtensionHandle}.)

Associated with a GH extension are three functions

\begin{itemize}
\item[SetupGH]
this is used to actually create the data structure holding the extension.  It
is called when a new cGH is created.
\item[InitGH]
this is used to initialise the extension.  It is called after the scheduler has
been initialised on the cGH.
\item[rfrTraverse]
this is called whenever the schedule tree is due to be traversed on the GH.  It
should initialise the data on the cGH and the call {\tt rfrTraverse} to traverse 
the schedule tree.
\end{itemize}

\chapter{IO Methods}

\chapter{Overloadable and Registerable Functions in Main}

 \begin{tabular}{|l|l|}
   \hline  {\bf Function} & {\bf Default} \\
   \hline {\t CCTK\_Initialise} 	&\\
   \hline {\t CCTK\_Evolve}	&\\
   \hline {\t CCTK\_Shutdown}	&\\
   \hline
 \end{tabular}

\chapter{Overloadable and Registerable Functions in Comm}

  \begin{tabular}{|l|l|}
   \hline {\bf Function} & {\bf Default} \\
   \hline {\t CCTK\_SyncGroup} 		&\\
   \hline {\t CCTK\_EnableGroupStorage}	&\\
   \hline {\t CCTK\_DisableGroupStorage}	&\\
   \hline {\t CCTK\_EnableGroupComm}		&\\
   \hline {\t CCTK\_DisableGroupComm}		&\\
   \hline {\t CCTK\_Barrier}			&\\
   \hline {\t CCTK\_Reduce}			&\\
   \hline {\t CCTK\_Interp} 			&\\
   \hline {\t CCTK\_ParallelInit}		&\\
   \hline
  \end{tabular}

\chapter{Overloadable and Registerable Functions in IO}

 \begin{tabular}{|l|l|} 
   \hline {\bf Function} & {\bf Default} \\
   \hline {\t CCTK\_OutputGH} & \\
   \hline {\t CCTK\_OutputVarAsByMethod} & \\
   \hline
 \end{tabular}

\chapter{Adding a Driver}

The flesh knows nothing about memory allocation for grid variables, or about how
to communicate data when synchronisation is called for.  It knows nothing about 
multiple patches or adaptive mesh refinement.  All this is the job of a driver.

\section{Anatomy}

A driver consists of a Startup routine which creates a GH extension and 
registers its associated functions, and overloads the communication functions.
It may optionally register interpolation, reduction, and IO methods.

A driver may also overload the default Initialisation and Evolution routines,
although a simple unigrid evolver is supplied in the flesh.

\section{Startup}

A driver consists of a GH extension, and the following overloaded
functions.

\begin{enumerate}
\item{} CCTK\_EnableGroupStorage
\item{} CCTK\_DisableGroupStorage
\item{} CCTK\_ArrayGroupSizeB
\item{} CCTK\_QueryGroupStorageB
\item{} CCTK\_SyncGroup
\item{} CCTK\_EnableGroupComm
\item{} CCTK\_DisableGroupComm
\item{} CCTK\_Barrier
\item{} CCTK\_OverloadParallelInit
\item{} CCTK\_OverloadExit
\item{} CCTK\_OverloadAbort
\item{} CCTK\_OverloadMyProc
\item{} CCTK\_OverloadnProcs
\end{enumerate}

\section{The GH Extension}

The GH extension is where the driver stores all its grid-dependent information.
This is stuff like any data associated with a grid variable (e.g. storage and
communication state), how many grids if it is AMR, ...  It is very difficult to 
describe in general, but one simple example might be

\begin{verbatim}

struct SimpleExtension
{
  /* The data assocatiated with each variable */
  /* data[var][timelevel][ijk]
  void ***data
} ;

\end{verbatim}

with a SetupGH routine like.

\begin{verbatim}

struct SimpleExtension *SimpleSetupGH(t_Fleshconfig *config, int conv_level, cGH *GH)
{
   struct SimpleExtension *extension;

   extension = NULL;

   if(conv_level < max_conv_level)
   {  
      /* Create the extension */
      extension = malloc(sizeof(struct SimpleExtension));

      /* Allocate data for all the variables */
      extension->data = malloc(num_vars*sizeof(void**));

      for(var = 0 ; var < num_vars; var++)
      {
        /* Allocate the memory for the time levels */
        extension->data[var] = malloc(num_var_time_levels*sizeof(void *));

        for(time_level = 0; time_level < num_var_time_level; time_level++)
        {
          /* Initialise the data to NULL */ 
          extension->data[var][time_level] = NULL;
        }
      }
    }

   return extension;
}

\end{verbatim}

Basically all this example is doing is preparing a data array for use.  The
function can query the flesh for information on every variable.  Note that 
scalars should always have memory actually assigned to them.

An {\tt InitGH} function isn't strictly necessary, and in ths case it could just
be a dummy function.

The {\tt rfrTravers} function needs to fill out the cGH data and then call 
{\tt CCTK\_Schedule} to have the functions scheduled at that point executed on the
grid.

\section{Memory Functions}

These consist of 
\begin{enumerate}
\item{} CCTK\_EnableGroupStorage
\item{} CCTK\_DisableGroupStorage
\item{} CCTK\_QueryGroupStorageB
\item{} CCTK\_ArrayGroupSizeB
\end{enumerate}

\subsection{En/Disable Group Storage}

These are responsible for switching the memory for all variables
in a group on or off.  They should return the former state, e.g.
if the group already has storage assigned, they should return 1.

In our simple example above, the enabling routine would look 
something like

\begin{verbatim}

int SimpleEnableGroupStorage(cGH *GH, const char *groupname)
{

  extension = (struct SimpleExtension *)GH->extensions[SimpleExtension];

  if(extension->data[first][0][0] == NULL)
  {
    for(var = first; var <= last; var++)
    {
      allocate memory for all time levels;
    }
    retcode = 0;
  }
  else
  {
    retcode = 1;
  }

  return retcode;
}

\end{verbatim}

Note that scalars should always have memory assigned.

The disable function is basically the reverse of the enable one.

The QueryGroupStorage function basically returns true or false if there is storage
for the group, and the ArrayGroupSize returns the size of the grid function or array
group in a particular direction.

\subsection{En/Disable Group Comm}

These are the communication analogues to the storage functions.  Basically they flag
that communication is to be done on that group or not, and may initialise data 
structures for the communication.



\chapter{Adding an IO layer}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{cactuspart}