aboutsummaryrefslogtreecommitdiff
path: root/Examples/EulerAuto/src/eulerauto_cons_calc_flux_3.cc
blob: 752fec3ec0511800424ac8288c257bb6f091a2b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*  File produced by Kranc */

#define KRANC_C

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "GenericFD.h"
#include "Differencing.h"
#include "cctk_Loop.h"
#include "loopcontrol.h"

/* Define macros used in calculations */
#define INITVALUE (42)
#define INV(x) ((CCTK_REAL)1.0 / (x))
#define SQR(x) ((x) * (x))
#define CUB(x) ((x) * SQR(x))
#define QAD(x) (SQR(SQR(x)))

extern "C" void eulerauto_cons_calc_flux_3_SelectBCs(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  CCTK_INT ierr = 0;
  ierr = Boundary_SelectGroupForBC(cctkGH, CCTK_ALL_FACES, GenericFD_GetBoundaryWidth(cctkGH), -1 /* no table */, "EulerAuto::Den_flux_group","flat");
  if (ierr < 0)
    CCTK_WARN(1, "Failed to register flat BC for EulerAuto::Den_flux_group.");
  ierr = Boundary_SelectGroupForBC(cctkGH, CCTK_ALL_FACES, GenericFD_GetBoundaryWidth(cctkGH), -1 /* no table */, "EulerAuto::En_flux_group","flat");
  if (ierr < 0)
    CCTK_WARN(1, "Failed to register flat BC for EulerAuto::En_flux_group.");
  ierr = Boundary_SelectGroupForBC(cctkGH, CCTK_ALL_FACES, GenericFD_GetBoundaryWidth(cctkGH), -1 /* no table */, "EulerAuto::S1_flux_group","flat");
  if (ierr < 0)
    CCTK_WARN(1, "Failed to register flat BC for EulerAuto::S1_flux_group.");
  ierr = Boundary_SelectGroupForBC(cctkGH, CCTK_ALL_FACES, GenericFD_GetBoundaryWidth(cctkGH), -1 /* no table */, "EulerAuto::S2_flux_group","flat");
  if (ierr < 0)
    CCTK_WARN(1, "Failed to register flat BC for EulerAuto::S2_flux_group.");
  ierr = Boundary_SelectGroupForBC(cctkGH, CCTK_ALL_FACES, GenericFD_GetBoundaryWidth(cctkGH), -1 /* no table */, "EulerAuto::S3_flux_group","flat");
  if (ierr < 0)
    CCTK_WARN(1, "Failed to register flat BC for EulerAuto::S3_flux_group.");
  return;
}

static void eulerauto_cons_calc_flux_3_Body(cGH const * restrict const cctkGH, int const dir, int const face, CCTK_REAL const normal[3], CCTK_REAL const tangentA[3], CCTK_REAL const tangentB[3], int const imin[3], int const imax[3], int const n_subblock_gfs, CCTK_REAL * restrict const subblock_gfs[])
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  
  /* Include user-supplied include files */
  
  /* Initialise finite differencing variables */
  ptrdiff_t const di = 1;
  ptrdiff_t const dj = CCTK_GFINDEX3D(cctkGH,0,1,0) - CCTK_GFINDEX3D(cctkGH,0,0,0);
  ptrdiff_t const dk = CCTK_GFINDEX3D(cctkGH,0,0,1) - CCTK_GFINDEX3D(cctkGH,0,0,0);
  ptrdiff_t const cdi = sizeof(CCTK_REAL) * di;
  ptrdiff_t const cdj = sizeof(CCTK_REAL) * dj;
  ptrdiff_t const cdk = sizeof(CCTK_REAL) * dk;
  CCTK_REAL const dx = ToReal(CCTK_DELTA_SPACE(0));
  CCTK_REAL const dy = ToReal(CCTK_DELTA_SPACE(1));
  CCTK_REAL const dz = ToReal(CCTK_DELTA_SPACE(2));
  CCTK_REAL const dt = ToReal(CCTK_DELTA_TIME);
  CCTK_REAL const t = ToReal(cctk_time);
  CCTK_REAL const dxi = INV(dx);
  CCTK_REAL const dyi = INV(dy);
  CCTK_REAL const dzi = INV(dz);
  CCTK_REAL const khalf = 0.5;
  CCTK_REAL const kthird = 1/3.0;
  CCTK_REAL const ktwothird = 2.0/3.0;
  CCTK_REAL const kfourthird = 4.0/3.0;
  CCTK_REAL const keightthird = 8.0/3.0;
  CCTK_REAL const hdxi = 0.5 * dxi;
  CCTK_REAL const hdyi = 0.5 * dyi;
  CCTK_REAL const hdzi = 0.5 * dzi;
  
  /* Initialize predefined quantities */
  CCTK_REAL const p1o1 = 1;
  CCTK_REAL const p1odx = INV(dx);
  CCTK_REAL const p1ody = INV(dy);
  CCTK_REAL const p1odz = INV(dz);
  
  /* Assign local copies of arrays functions */
  
  
  
  /* Calculate temporaries and arrays functions */
  
  /* Copy local copies back to grid functions */
  
  /* Loop over the grid points */
  #pragma omp parallel
  CCTK_LOOP3(eulerauto_cons_calc_flux_3,
    i,j,k, imin[0],imin[1],imin[2], imax[0],imax[1],imax[2],
    cctk_ash[0],cctk_ash[1],cctk_ash[2])
  {
    ptrdiff_t const index = di*i + dj*j + dk*k;
    
    /* Assign local copies of grid functions */
    
    CCTK_REAL DenLeftL = DenLeft[index];
    CCTK_REAL DenRightL = DenRight[index];
    CCTK_REAL EnLeftL = EnLeft[index];
    CCTK_REAL EnRightL = EnRight[index];
    CCTK_REAL pLeftL = pLeft[index];
    CCTK_REAL pRightL = pRight[index];
    CCTK_REAL rhoLeftL = rhoLeft[index];
    CCTK_REAL rhoRightL = rhoRight[index];
    CCTK_REAL S1LeftL = S1Left[index];
    CCTK_REAL S1RightL = S1Right[index];
    CCTK_REAL S2LeftL = S2Left[index];
    CCTK_REAL S2RightL = S2Right[index];
    CCTK_REAL S3LeftL = S3Left[index];
    CCTK_REAL S3RightL = S3Right[index];
    CCTK_REAL v1LeftL = v1Left[index];
    CCTK_REAL v1RightL = v1Right[index];
    CCTK_REAL v2LeftL = v2Left[index];
    CCTK_REAL v2RightL = v2Right[index];
    CCTK_REAL v3LeftL = v3Left[index];
    CCTK_REAL v3RightL = v3Right[index];
    
    
    /* Include user supplied include files */
    
    /* Precompute derivatives */
    CCTK_REAL const ShiftMinus3DenRight = ShiftMinus3(&DenRight[index]);
    CCTK_REAL const ShiftMinus3EnRight = ShiftMinus3(&EnRight[index]);
    CCTK_REAL const ShiftMinus3pRight = ShiftMinus3(&pRight[index]);
    CCTK_REAL const ShiftMinus3rhoRight = ShiftMinus3(&rhoRight[index]);
    CCTK_REAL const ShiftMinus3S1Right = ShiftMinus3(&S1Right[index]);
    CCTK_REAL const ShiftMinus3S2Right = ShiftMinus3(&S2Right[index]);
    CCTK_REAL const ShiftMinus3S3Right = ShiftMinus3(&S3Right[index]);
    CCTK_REAL const ShiftMinus3v1Right = ShiftMinus3(&v1Right[index]);
    CCTK_REAL const ShiftMinus3v2Right = ShiftMinus3(&v2Right[index]);
    CCTK_REAL const ShiftMinus3v3Right = ShiftMinus3(&v3Right[index]);
    
    /* Calculate temporaries and grid functions */
    CCTK_REAL DenFluxLeft = rhoLeftL*v3LeftL;
    
    CCTK_REAL DenFluxRight = ShiftMinus3rhoRight*ShiftMinus3v3Right;
    
    CCTK_REAL DenFluxL = 0.5*(DenFluxLeft + DenFluxRight + (-DenLeftL + 
      ShiftMinus3DenRight)*ToReal(hlleAlpha));
    
    CCTK_REAL S1FluxLeft = rhoLeftL*v1LeftL*v3LeftL;
    
    CCTK_REAL S1FluxRight = 
      ShiftMinus3rhoRight*ShiftMinus3v1Right*ShiftMinus3v3Right;
    
    CCTK_REAL S1FluxL = 0.5*(S1FluxLeft + S1FluxRight + (-S1LeftL + 
      ShiftMinus3S1Right)*ToReal(hlleAlpha));
    
    CCTK_REAL S2FluxLeft = rhoLeftL*v2LeftL*v3LeftL;
    
    CCTK_REAL S2FluxRight = 
      ShiftMinus3rhoRight*ShiftMinus3v2Right*ShiftMinus3v3Right;
    
    CCTK_REAL S2FluxL = 0.5*(S2FluxLeft + S2FluxRight + (-S2LeftL + 
      ShiftMinus3S2Right)*ToReal(hlleAlpha));
    
    CCTK_REAL S3FluxLeft = pLeftL + rhoLeftL*SQR(v3LeftL);
    
    CCTK_REAL S3FluxRight = ShiftMinus3pRight + 
      ShiftMinus3rhoRight*SQR(ShiftMinus3v3Right);
    
    CCTK_REAL S3FluxL = 0.5*(S3FluxLeft + S3FluxRight + (-S3LeftL + 
      ShiftMinus3S3Right)*ToReal(hlleAlpha));
    
    CCTK_REAL EnFluxLeft = (EnLeftL + pLeftL)*v3LeftL;
    
    CCTK_REAL EnFluxRight = (ShiftMinus3EnRight + 
      ShiftMinus3pRight)*ShiftMinus3v3Right;
    
    CCTK_REAL EnFluxL = 0.5*(EnFluxLeft + EnFluxRight + (-EnLeftL + 
      ShiftMinus3EnRight)*ToReal(hlleAlpha));
    
    /* Copy local copies back to grid functions */
    DenFlux[index] = DenFluxL;
    EnFlux[index] = EnFluxL;
    S1Flux[index] = S1FluxL;
    S2Flux[index] = S2FluxL;
    S3Flux[index] = S3FluxL;
  }
  CCTK_ENDLOOP3(eulerauto_cons_calc_flux_3);
}

extern "C" void eulerauto_cons_calc_flux_3(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  
  if (verbose > 1)
  {
    CCTK_VInfo(CCTK_THORNSTRING,"Entering eulerauto_cons_calc_flux_3_Body");
  }
  
  if (cctk_iteration % eulerauto_cons_calc_flux_3_calc_every != eulerauto_cons_calc_flux_3_calc_offset)
  {
    return;
  }
  
  const char *const groups[] = {
    "EulerAuto::Den_flux_group",
    "EulerAuto::Den_lr_group",
    "EulerAuto::En_flux_group",
    "EulerAuto::En_lr_group",
    "EulerAuto::p_lr_group",
    "EulerAuto::rho_lr_group",
    "EulerAuto::S1_flux_group",
    "EulerAuto::S1_lr_group",
    "EulerAuto::S2_flux_group",
    "EulerAuto::S2_lr_group",
    "EulerAuto::S3_flux_group",
    "EulerAuto::S3_lr_group",
    "EulerAuto::v1_lr_group",
    "EulerAuto::v2_lr_group",
    "EulerAuto::v3_lr_group"};
  GenericFD_AssertGroupStorage(cctkGH, "eulerauto_cons_calc_flux_3", 15, groups);
  
  GenericFD_EnsureStencilFits(cctkGH, "eulerauto_cons_calc_flux_3", 1, 1, 1);
  
  GenericFD_LoopOverInterior(cctkGH, eulerauto_cons_calc_flux_3_Body);
  
  if (verbose > 1)
  {
    CCTK_VInfo(CCTK_THORNSTRING,"Leaving eulerauto_cons_calc_flux_3_Body");
  }
}