/*@@ @file InitialData.F @date @author Tom Goodale @desc Initial data for the 3D Wave Equation @enddesc @@*/ #include "cctk.h" #include "cctk_parameters.h" #include "cctk_arguments.h" /*@@ @routine WaveToyF90_InitialData @date @author Tom Goodale @desc Set up initial data for the wave equation @enddesc @calls @calledby @history @endhistory @@*/ subroutine WaveToyF90_InitialData(CCTK_FARGUMENTS) implicit none DECLARE_CCTK_FARGUMENTS DECLARE_CCTK_PARAMETERS INTEGER CCTK_Equals INTEGER :: i CCTK_REAL :: dt,omega, pi CCTK_REAL :: min_delta,dx,dy,dz pi = 4.0*atan(1.0) c Grid spacing shortcuts c ---------------------- dx = cctk_delta_space(1) dy = cctk_delta_space(2) dz = cctk_delta_space(3) c Calculate timestep c ------------------ min_delta = min(dx,dy,dz) cctk_delta_time = dtfac*min_delta dt = cctk_delta_time omega = sqrt(kx**2+ky**2+kz**2) if (CCTK_Equals(initial_data,"plane")==1) then phi = amplitude*cos(kx*x+ky*y+kz*z+omega*cctk_time) phi_old = amplitude*cos(kx*x+ky*y+kz*z+omega*(cctk_time-dt)) else if (CCTK_Equals(initial_data,"gaussian")==1) then call CCTK_INFO("Gaussian initial data for Wave Equation"); phi = amplitude*exp( -(sqrt(x**2+y**2+z**2)-radius)**2/sigma**2) phi_old = amplitude*exp( -(sqrt(x**2+y**2+z**2)-radius-dt)**2/sigma**2) else if (CCTK_Equals(initial_data, "box")==1) then c Use kx,ky,kz as number of modes in each direction. phi = amplitude*sin(kx*(x-0.5)*pi)* $ sin(ky*(y-0.5)*pi)* $ sin(kz*(z-0.5)*pi)* $ cos(omega*cctk_time*pi) phi_old = amplitude*sin(kx*(x-0.5)*pi)* $ sin(ky*(y-0.5)*pi)* $ sin(kz*(z-0.5)*pi)* $ cos(omega*(cctk_time-dt)*pi) end if c Apply symmetry boundary conditions c ---------------------------------- call ApplySymmetry(cctkGH,"wavetoy::scalarevolve") c Synchronise c ----------- call CCTK_SyncGroup(cctkGH,"wavetoy::scalarevolve") end subroutine WaveToyF90_InitialData