/* * Maximal slicing -- actual solver code * Copyright (C) 2016 Anton Khirnov * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "common.h" #include #include #include #include #include #include #if HAVE_OPENCL #include #include #endif #include "cctk.h" #include "cctk_Timers.h" #include "util_Table.h" #include "basis.h" #include "pssolve.h" #include "ms_solve.h" #define NB_COEFFS(ms) (ms->nb_coeffs[0] * ms->nb_coeffs[1]) #define NB_COLLOC_POINTS(ms) (ms->nb_colloc_points[0] * ms->nb_colloc_points[1]) /* indices (in our code, not cactus structs) of the grid functions which we'll need to * interpolate on the pseudospectral grid */ enum MetricVars { GTXX = 0, GTYY, GTZZ, GTXY, GTXZ, GTYZ, PHI, ATXX, ATYY, ATZZ, ATXY, ATXZ, ATYZ, K, XTX, XTY, XTZ, BETAX, BETAY, BETAZ, NB_METRIC_VARS, }; /* indices of the interpolated values of the above grid functions and their derivatives */ enum InterpMetricVars { I_GTXX = 0, I_GTYY, I_GTZZ, I_GTXY, I_GTXZ, I_GTYZ, I_PHI, I_PHI_DX, I_PHI_DY, I_PHI_DZ, I_ATXX, I_ATYY, I_ATZZ, I_ATXY, I_ATXZ, I_ATYZ, I_K, I_XTX, I_XTY, I_XTZ, I_BETAX, I_BETAY, I_BETAZ, NB_INTERP_VARS, }; struct MSSolverPriv { PSSolveContext *ps_ctx; cGH *gh; int colloc_grid_order[2]; double *eq_coeffs[PSSOLVE_DIFF_ORDER_NB]; double *rhs; double *coeff_scale; // interpolation parameters int coord_system; int interp_operator; int interp_params; CCTK_REAL *interp_coords[3]; int interp_vars_indices[NB_METRIC_VARS]; CCTK_REAL *interp_values[NB_INTERP_VARS]; CCTK_INT interp_value_codes[NB_INTERP_VARS]; #if HAVE_OPENCL // OpenCL / CLBLAS stuff cl_context ocl_ctx; cl_command_queue ocl_queue; #endif uint64_t solve_count; uint64_t solve_time; uint64_t interp_geometry_count; uint64_t interp_geometry_time; uint64_t calc_eq_coeffs_count; uint64_t calc_eq_coeffs_time; }; /* mapping between our indices and thorn names */ static const char *metric_vars[] = { #if MS_CCZ4 [GTXX] = "ML_CCZ4::gt11", [GTYY] = "ML_CCZ4::gt22", [GTZZ] = "ML_CCZ4::gt33", [GTXY] = "ML_CCZ4::gt12", [GTXZ] = "ML_CCZ4::gt13", [GTYZ] = "ML_CCZ4::gt23", [ATXX] = "ML_CCZ4::At11", [ATYY] = "ML_CCZ4::At22", [ATZZ] = "ML_CCZ4::At33", [ATXY] = "ML_CCZ4::At12", [ATXZ] = "ML_CCZ4::At13", [ATYZ] = "ML_CCZ4::At23", [PHI] = "ML_CCZ4::phi", [K] = "ML_CCZ4::trK", [XTX] = "ML_CCZ4::Xt1", [XTY] = "ML_CCZ4::Xt2", [XTZ] = "ML_CCZ4::Xt3", [BETAX] = "ML_CCZ4::beta1", [BETAY] = "ML_CCZ4::beta2", [BETAZ] = "ML_CCZ4::beta3", #else [GTXX] = "ML_BSSN::gt11", [GTYY] = "ML_BSSN::gt22", [GTZZ] = "ML_BSSN::gt33", [GTXY] = "ML_BSSN::gt12", [GTXZ] = "ML_BSSN::gt13", [GTYZ] = "ML_BSSN::gt23", [ATXX] = "ML_BSSN::At11", [ATYY] = "ML_BSSN::At22", [ATZZ] = "ML_BSSN::At33", [ATXY] = "ML_BSSN::At12", [ATXZ] = "ML_BSSN::At13", [ATYZ] = "ML_BSSN::At23", [PHI] = "ML_BSSN::phi", [K] = "ML_BSSN::trK", [XTX] = "ML_BSSN::Xt1", [XTY] = "ML_BSSN::Xt2", [XTZ] = "ML_BSSN::Xt3", [BETAX] = "ML_BSSN::beta1", [BETAY] = "ML_BSSN::beta2", [BETAZ] = "ML_BSSN::beta3", #endif }; /* mapping between the cactus grid values and interpolated values */ static const CCTK_INT interp_operation_indices[] = { [I_GTXX] = GTXX, [I_GTYY] = GTYY, [I_GTZZ] = GTZZ, [I_GTXY] = GTXY, [I_GTXZ] = GTXZ, [I_GTYZ] = GTYZ, [I_PHI] = PHI, [I_PHI_DX] = PHI, [I_PHI_DY] = PHI, [I_PHI_DZ] = PHI, [I_ATXX] = ATXX, [I_ATYY] = ATYY, [I_ATZZ] = ATZZ, [I_ATXY] = ATXY, [I_ATXZ] = ATXZ, [I_ATYZ] = ATYZ, [I_K] = K, [I_XTX] = XTX, [I_XTY] = XTY, [I_XTZ] = XTZ, [I_BETAX] = BETAX, [I_BETAY] = BETAY, [I_BETAZ] = BETAZ, }; /* the operation (plain value or x/y/z-derivative) to apply during interpolation */ static const CCTK_INT interp_operation_codes[] = { [I_GTXX] = 0, [I_GTYY] = 0, [I_GTZZ] = 0, [I_GTXY] = 0, [I_GTXZ] = 0, [I_GTYZ] = 0, [I_PHI] = 0, [I_PHI_DX] = 1, [I_PHI_DY] = 2, [I_PHI_DZ] = 3, [I_ATXX] = 0, [I_ATYY] = 0, [I_ATZZ] = 0, [I_ATXY] = 0, [I_ATXZ] = 0, [I_ATYZ] = 0, [I_K] = 0, [I_XTX] = 0, [I_XTY] = 0, [I_XTZ] = 0, [I_BETAX] = 0, [I_BETAY] = 0, [I_BETAZ] = 0, }; static int ctz(int a) { int ret = 0; if (!a) return INT_MAX; while (!(a & 1)) { a >>= 1; ret++; } return ret; } /* interpolate the cactus gridfunctions onto the pseudospectral grid */ static int interp_geometry(MSSolver *ctx) { MSSolverPriv *s = ctx->priv; int level = ctz(s->gh->cctk_levfac[0]); int ret; ret = Util_TableSetInt(s->interp_params, level + 1, "max_reflevel"); if (ret < 0) CCTK_WARN(0, "Error setting max reflevel"); ret = CCTK_InterpGridArrays(s->gh, 3, s->interp_operator, s->interp_params, s->coord_system, NB_COLLOC_POINTS(ctx), CCTK_VARIABLE_REAL, (const void * const *)s->interp_coords, ARRAY_ELEMS(s->interp_vars_indices), s->interp_vars_indices, ARRAY_ELEMS(s->interp_values), s->interp_value_codes, (void * const *)s->interp_values); if (ret < 0) CCTK_WARN(0, "Error interpolating"); return 0; } /* evaluate the equation coefficients at the collocation points */ static int calc_eq_coeffs(MSSolver *ctx) { MSSolverPriv *s = ctx->priv; #pragma omp parallel for for (int i = 0; i < NB_COLLOC_POINTS(ctx); i++) { CCTK_REAL Am[3][3], gtu[3][3]; CCTK_REAL a2; CCTK_REAL gtxx = s->interp_values[I_GTXX][i]; CCTK_REAL gtyy = s->interp_values[I_GTYY][i]; CCTK_REAL gtzz = s->interp_values[I_GTZZ][i]; CCTK_REAL gtxy = s->interp_values[I_GTXY][i]; CCTK_REAL gtxz = s->interp_values[I_GTXZ][i]; CCTK_REAL gtyz = s->interp_values[I_GTYZ][i]; CCTK_REAL Atxx = s->interp_values[I_ATXX][i]; CCTK_REAL Atyy = s->interp_values[I_ATYY][i]; CCTK_REAL Atzz = s->interp_values[I_ATZZ][i]; CCTK_REAL Atxy = s->interp_values[I_ATXY][i]; CCTK_REAL Atxz = s->interp_values[I_ATXZ][i]; CCTK_REAL Atyz = s->interp_values[I_ATYZ][i]; CCTK_REAL At[3][3] = {{ Atxx, Atxy, Atxz }, { Atxy, Atyy, Atyz }, { Atxz, Atyz, Atzz }}; CCTK_REAL trK = s->interp_values[I_K][i]; CCTK_REAL Xtx = s->interp_values[I_XTX][i]; CCTK_REAL Xtz = s->interp_values[I_XTZ][i]; CCTK_REAL det = gtxx * gtyy * gtzz + 2 * gtxy * gtyz * gtxz - gtzz * SQR(gtxy) - SQR(gtxz) * gtyy - gtxx * SQR(gtyz); // \tilde{γ}^{ij} gtu[0][0] = (gtyy * gtzz - SQR(gtyz)) / det; gtu[1][1] = (gtxx * gtzz - SQR(gtxz)) / det; gtu[2][2] = (gtxx * gtyy - SQR(gtxy)) / det; gtu[0][1] = -(gtxy * gtzz - gtyz * gtxz) / det; gtu[0][2] = (gtxy * gtyz - gtyy * gtxz) / det; gtu[1][2] = -(gtxx * gtyz - gtxy * gtxz) / det; gtu[1][0] = gtu[0][1]; gtu[2][0] = gtu[0][2]; gtu[2][1] = gtu[1][2]; // \tilde{A}_{i}^j for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) { double val = 0.0; for (int l = 0; l < 3; l++) val += gtu[j][l] * At[l][k]; Am[j][k] = val; } // K_{ij} K^{ij} a2 = 0.0; for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) a2 += Am[j][k] * Am[k][j]; { double x = s->interp_coords[0][i]; double z = s->interp_coords[2][i]; const double gtuxx = gtu[0][0]; const double gtuyy = gtu[1][1]; const double gtuzz = gtu[2][2]; const double gtuxz = gtu[0][2]; const double phi = s->interp_values[I_PHI][i]; const double phi_dx = s->interp_values[I_PHI_DX][i]; const double phi_dz = s->interp_values[I_PHI_DZ][i]; const double Xtx = s->interp_values[I_XTX][i]; const double Xtz = s->interp_values[I_XTZ][i]; const double k2 = a2 + SQR(trK) / 3.; const double betax = s->interp_values[I_BETAX][i]; const double betaz = s->interp_values[I_BETAZ][i]; const double Xx = SQR(phi) * (Xtx + (phi_dx * gtuxx + phi_dz * gtuxz) / phi); const double Xz = SQR(phi) * (Xtz + (phi_dx * gtuxz + phi_dz * gtuzz) / phi); s->eq_coeffs[PSSOLVE_DIFF_ORDER_20][i] = SQR(phi) * (gtuxx + ((x <= EPS) ? gtuyy : 0.0)); s->eq_coeffs[PSSOLVE_DIFF_ORDER_02][i] = SQR(phi) * gtuzz; s->eq_coeffs[PSSOLVE_DIFF_ORDER_11][i] = SQR(phi) * gtuxz * 2; s->eq_coeffs[PSSOLVE_DIFF_ORDER_10][i] = -Xx + ((x > EPS) ? SQR(phi) * gtuyy / x : 0.0); s->eq_coeffs[PSSOLVE_DIFF_ORDER_01][i] = -Xz; s->eq_coeffs[PSSOLVE_DIFF_ORDER_00][i] = -k2; s->rhs[i] = k2 + trK; } } return 0; } int ms_solver_solve(MSSolver *ctx) { MSSolverPriv *s = ctx->priv; int ret; int64_t start, totaltime_start; totaltime_start = gettime(); /* interpolate the metric values and construct the quantities we'll need */ CCTK_TimerStart("MaximalSlicing_interp_geometry"); start = gettime(); ret = interp_geometry(ctx); s->interp_geometry_time += gettime() - start; s->interp_geometry_count++; CCTK_TimerStop("MaximalSlicing_interp_geometry"); if (ret < 0) return ret; CCTK_TimerStart("MaximalSlicing_calc_eq_coeffs"); start = gettime(); ret = calc_eq_coeffs(ctx); s->calc_eq_coeffs_time += gettime() - start; s->calc_eq_coeffs_count++; CCTK_TimerStop("MaximalSlicing_calc_eq_coeffs"); if (ret < 0) return ret; ret = ms_pssolve_solve(s->ps_ctx, (const double * const *)s->eq_coeffs, s->rhs, ctx->coeffs); if (ret < 0) return ret; for (int i = 0; i < NB_COEFFS(ctx); i++) ctx->coeffs[i] *= s->coeff_scale[i]; s->solve_count++; s->solve_time += gettime() - totaltime_start; return 0; } void ms_solver_print_stats(MSSolver *ctx) { MSSolverPriv *s = ctx->priv; fprintf(stderr, "%g%% interpolate geometry: %lu, " "total time %g s, avg time per call %g ms\n", (double)s->interp_geometry_time * 100 / s->solve_time, s->interp_geometry_count, (double)s->interp_geometry_time / 1e6, (double)s->interp_geometry_time / s->interp_geometry_count / 1e3); fprintf(stderr, "%g%% calc equation coefficients: %lu, " "total time %g s, avg time per call %g ms\n", (double)s->calc_eq_coeffs_time * 100 / s->solve_time, s->calc_eq_coeffs_count, (double)s->calc_eq_coeffs_time / 1e6, (double)s->calc_eq_coeffs_time / s->calc_eq_coeffs_count / 1e3); fprintf(stderr, "%g%% pseudospectral matrix construction: %lu, " "total time %g s, avg time per call %g ms\n", (double)s->ps_ctx->construct_matrix_time * 100 / s->solve_time, s->ps_ctx->construct_matrix_count, (double)s->ps_ctx->construct_matrix_time / 1e6, (double)s->ps_ctx->construct_matrix_time / s->ps_ctx->construct_matrix_count / 1e3); fprintf(stderr, "%g%% BiCGSTAB %lu solves, " "%lu iterations, total time %g s, " "avg iterations per solve %g, avg time per solve %g ms, " "avg time per iteration %g ms\n", (double)s->ps_ctx->cg_time_total * 100 / s->solve_time, s->ps_ctx->cg_solve_count, s->ps_ctx->cg_iter_count, (double)s->ps_ctx->cg_time_total / 1e6, (double)s->ps_ctx->cg_iter_count / s->ps_ctx->cg_solve_count, (double)s->ps_ctx->cg_time_total / s->ps_ctx->cg_solve_count / 1e3, (double)s->ps_ctx->cg_time_total / s->ps_ctx->cg_iter_count / 1e3); fprintf(stderr, "%g%% LU %lu solves, total time %g s, avg time per solve %g ms\n", (double)s->ps_ctx->lu_solves_time * 100 / s->solve_time, s->ps_ctx->lu_solves_count, (double)s->ps_ctx->lu_solves_time / 1e6, (double)s->ps_ctx->lu_solves_time / s->ps_ctx->lu_solves_count / 1e3); } static void init_opencl(MSSolver *ctx) #if HAVE_OPENCL { MSSolverPriv *s = ctx->priv; int err, count; cl_platform_id platform; cl_context_properties props[3]; cl_device_id ocl_device; err = clGetPlatformIDs(1, &platform, &count); if (err != CL_SUCCESS || count < 1) { fprintf(stderr, "Could not get an OpenCL platform ID\n"); return; } err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &ocl_device, &count); if (err != CL_SUCCESS || count < 1) { fprintf(stderr, "Could not get an OpenCL device ID\n"); return; } props[0] = CL_CONTEXT_PLATFORM; props[1] = (cl_context_properties)platform; props[2] = 0; s->ocl_ctx = clCreateContext(props, 1, &ocl_device, NULL, NULL, &err); if (err != CL_SUCCESS || !s->ocl_ctx) { fprintf(stderr, "Could not create an OpenCL context\n"); return; } s->ocl_queue = clCreateCommandQueue(s->ocl_ctx, ocl_device, 0, &err); if (err != CL_SUCCESS || !s->ocl_queue) { fprintf(stderr, "Could not create an OpenCL command queue: %d\n", err); goto fail; } err = clblasSetup(); if (err != CL_SUCCESS) { fprintf(stderr, "Error setting up clBLAS\n"); goto fail; } return; fail: if (s->ocl_queue) clReleaseCommandQueue(s->ocl_queue); s->ocl_queue = 0; if (s->ocl_ctx) clReleaseContext(s->ocl_ctx); s->ocl_ctx = 0; } #else { } #endif int ms_solver_init(MSSolver **pctx, cGH *cctkGH, int basis_order_r, int basis_order_z, double outer_bound, double filter_power, double input_filter_power) { MSSolver *ctx; MSSolverPriv *s; int ret; ctx = calloc(1, sizeof(*ctx)); if (!ctx) return -ENOMEM; ctx->priv = calloc(1, sizeof(*ctx->priv)); if (!ctx->priv) goto fail; s = ctx->priv; s->gh = cctkGH; ctx->basis[0] = &ms_sb_even_basis; #if MS_POLAR ctx->basis[1] = &ms_cos_even_basis; #else ctx->basis[1] = &ms_sb_even_basis; #endif ctx->nb_coeffs[0] = basis_order_r; ctx->nb_coeffs[1] = basis_order_z; ctx->nb_colloc_points[0] = basis_order_r; ctx->nb_colloc_points[1] = basis_order_z; if (NB_COLLOC_POINTS(ctx) != NB_COEFFS(ctx)) CCTK_WARN(0, "Non-square collocation matrix"); s->colloc_grid_order[0] = ctx->nb_colloc_points[0]; s->colloc_grid_order[1] = ctx->nb_colloc_points[1]; ret = posix_memalign((void**)&ctx->coeffs, 32, sizeof(*ctx->coeffs) * NB_COEFFS(ctx)); ret |= posix_memalign((void**)&s->rhs, 32, sizeof(*s->rhs) * NB_COLLOC_POINTS(ctx)); if (ret) goto fail; //FIXME scale_factor = 1.0; scale_factor = (outer_bound / ctx->basis[0]->colloc_point(s->colloc_grid_order[0], ctx->nb_colloc_points[0] - 1)); fprintf(stderr, "scale factor %16.16g\n", scale_factor); init_opencl(ctx); ret = ms_pssolve_context_alloc(&s->ps_ctx); if (ret < 0) CCTK_WARN(0, "Error allocating the pseudospectral solver"); s->ps_ctx->basis[0] = ctx->basis[0]; s->ps_ctx->basis[1] = ctx->basis[1]; s->ps_ctx->solve_order[0] = basis_order_r; s->ps_ctx->solve_order[1] = basis_order_z; #if HAVE_OPENCL s->ps_ctx->ocl_ctx = s->ocl_ctx; s->ps_ctx->ocl_queue = s->ocl_queue; #endif ret = ms_pssolve_context_init(s->ps_ctx); if (ret < 0) CCTK_WARN(0, "Error initializing the pseudospectral solver"); for (int i = 0; i < MAX(s->ps_ctx->solve_order[0], s->ps_ctx->solve_order[1]); i++) { fprintf(stderr, "%d ", i); if (i < s->ps_ctx->solve_order[0]) fprintf(stderr, "%g\t", s->ps_ctx->colloc_grid[0][i]); else fprintf(stderr, "\t\t"); if (i < s->ps_ctx->solve_order[1]) fprintf(stderr, "%g\t", s->ps_ctx->colloc_grid[1][i]); fprintf(stderr, "\n"); } for (int i = 0; i < ARRAY_ELEMS(s->eq_coeffs); i++) { ret = posix_memalign((void**)&s->eq_coeffs[i], 32, NB_COLLOC_POINTS(ctx) * sizeof(*s->eq_coeffs[i])); if (ret) goto fail; } for (int i = 0; i < ARRAY_ELEMS(s->interp_coords); i++) { ret |= posix_memalign((void**)&s->interp_coords[i], 32, NB_COLLOC_POINTS(ctx) * sizeof(*s->interp_coords[i])); } if (ret) goto fail; for (int i = 0; i < ctx->nb_colloc_points[1]; i++) { for (int j = 0; j < ctx->nb_colloc_points[0]; j++) { #if MS_POLAR double phi = s->ps_ctx->colloc_grid[1][i]; double r = s->ps_ctx->colloc_grid[0][j]; double x = r * cos(phi); double z = r * sin(phi); #else double x = s->ps_ctx->colloc_grid[0][j]; double z = s->ps_ctx->colloc_grid[1][i]; #endif s->interp_coords[0][i * ctx->nb_colloc_points[0] + j] = x; s->interp_coords[1][i * ctx->nb_colloc_points[0] + j] = 0; s->interp_coords[2][i * ctx->nb_colloc_points[0] + j] = z; } } ret = posix_memalign((void**)&s->coeff_scale, 32, NB_COEFFS(ctx) * sizeof(*s->coeff_scale)); if (ret) goto fail; for (int j = 0; j < ctx->nb_coeffs[1]; j++) for (int i = 0; i < ctx->nb_coeffs[0]; i++) { s->coeff_scale[j * ctx->nb_coeffs[0] + i] = exp(-36.0 * pow((double)i / ctx->nb_coeffs[0], filter_power)) * exp(-36.0 * pow((double)j / ctx->nb_coeffs[1], filter_power)); } for (int i = 0; i < ARRAY_ELEMS(s->interp_values); i++) { ret = posix_memalign((void**)&s->interp_values[i], 32, NB_COLLOC_POINTS(ctx) * sizeof(*s->interp_values[i])); if (ret) goto fail; s->interp_value_codes[i] = CCTK_VARIABLE_REAL; } for (int i = 0; i < ARRAY_ELEMS(metric_vars); i++) { s->interp_vars_indices[i] = CCTK_VarIndex(metric_vars[i]); if (s->interp_vars_indices[i] < 0) CCTK_VWarn(0, __LINE__, __FILE__, CCTK_THORNSTRING, "Error getting the index of variable: %s\n", metric_vars[i]); } s->coord_system = CCTK_CoordSystemHandle("cart3d"); if (s->coord_system < 0) CCTK_WARN(0, "Error getting the coordinate system"); s->interp_operator = CCTK_InterpHandle("Lagrange polynomial interpolation (tensor product)"); if (s->interp_operator < 0) CCTK_WARN(0, "Error getting the interpolation operator"); s->interp_params = Util_TableCreateFromString("order=4 want_global_mode=1"); if (s->interp_params < 0) CCTK_WARN(0, "Error creating interpolation parameters table"); ret = Util_TableSetIntArray(s->interp_params, NB_INTERP_VARS, interp_operation_codes, "operation_codes"); if (ret < 0) CCTK_WARN(0, "Error setting operation codes"); ret = Util_TableSetIntArray(s->interp_params, NB_INTERP_VARS, interp_operation_indices, "operand_indices"); if (ret < 0) CCTK_WARN(0, "Error setting operand indices"); CCTK_TimerCreate("MaximalSlicing_Solve"); CCTK_TimerCreate("MaximalSlicing_Expand"); CCTK_TimerCreate("MaximalSlicing_interp_geometry"); CCTK_TimerCreate("MaximalSlicing_calc_eq_coeffs"); CCTK_TimerCreate("MaximalSlicing_construct_matrix"); CCTK_TimerCreate("MaximalSlicing_solve_LU"); CCTK_TimerCreate("MaximalSlicing_solve_BiCGSTAB"); *pctx = ctx; return 0; fail: ms_solver_free(&ctx); return -ENOMEM; } void ms_solver_free(MSSolver **pctx) { MSSolver *ctx = *pctx; if (!ctx) return; if (ctx->priv) { for (int i = 0; i < ARRAY_ELEMS(ctx->priv->interp_coords); i++) free(ctx->priv->interp_coords[i]); for (int i = 0; i < ARRAY_ELEMS(ctx->priv->interp_values); i++) free(ctx->priv->interp_values[i]); for (int i = 0; i < ARRAY_ELEMS(ctx->priv->eq_coeffs); i++) free(ctx->priv->eq_coeffs[i]); free(ctx->priv->rhs); free(ctx->priv->coeff_scale); ms_pssolve_context_free(&ctx->priv->ps_ctx); #if HAVE_OPENCL if (ctx->priv->ocl_queue) clReleaseCommandQueue(ctx->priv->ocl_queue); if (ctx->priv->ocl_ctx) clReleaseContext(ctx->priv->ocl_ctx); #endif } free(ctx->priv); free(ctx->coeffs); free(ctx); *pctx = NULL; }