From ae61ae229fd5007c91bffc7038f83f51fc9ab7d6 Mon Sep 17 00:00:00 2001 From: allen Date: Tue, 14 May 2002 16:47:25 +0000 Subject: Added documentation for plane waves, still needs to be checked carefully with the source code and parameters git-svn-id: http://svn.einsteintoolkit.org/cactus/EinsteinInitialData/IDLinearWaves/trunk@73 5c0f84ea-6048-4d6e-bfa4-55cd5f2e0dd7 --- doc/documentation.tex | 63 ++++++++++++++++++++++++++++++++++++--------------- 1 file changed, 45 insertions(+), 18 deletions(-) diff --git a/doc/documentation.tex b/doc/documentation.tex index 8386fc3..c8d5081 100644 --- a/doc/documentation.tex +++ b/doc/documentation.tex @@ -12,32 +12,59 @@ Mark Miller, Malcolm Tobias, Paul Walker} \section{Purpose} -There are two different linearized initial data sets provided: +There are two different linearized initial data sets provided, plane waves +and Teukolsky waves. -\begin{enumerate} -\item plane waves \\ -Plane waves cane be specified to be travelling in an arbitrary direction. -The form of the wave packet is: +\section{Plane Waves} + +A full description of plane waves can be found in the PhD Thesis of +Malcolm Tobias, {\it The Numerical Evolution of Gravitational Waves}, +which can be found at {\tt http://wugrav.wustl.edu/Papers/Thesis97/Thesis97.html}. + +Plane waves travelling in arbitrary directions can be specified. For +these plane waves the TT gauge is assumed (the metric perturbations +are transverse to the direction of propagation, and the metric is +traceless). In the case of waves travelling along the $z-$direction +this would give the {\it plus} solution +$$ +h_{xx}=-h_{yy}=f(t\pm z), h_{xy}=h_{xz}=h_{yz}=h_{zz} = 0 +$$ +and the {\it cross} solution +$$ +h_{xy}=h_{yx}=f(t\pm z), h_{yz}=h_{xx}=h_{yy}=h_{zz}=0 +$$ +This thorn implements the {\tt plus} solution, with the waveform +$f(t\pm z)$ having the form of a Gaussian modulated sine function. +Now working with a general direction of propagation $k$ we have the +plane wave solution: +$$ +f(t,x,y,z) = A_{in} e^{-(k_i^p x^i + \omega_p(t-r_a) )^2} \cos(k_ix^i+\omega t) + + A_{out} e^{-(k_i^p x^i -\omega_p(t-r_a))^2} \cos(k_i x^i - \omega t) +$$ +and +\begin{eqnarray*} +g_{xx}&=& 1 + f[\cos^2\phi - \cos^\theta\sin^2\phi] +\\ +g_{xy}&=& - f \sin^2 \theta \sin \phi \cos \phi +\\ +g_{xz} &=& f \sin\theta \cos\theta \sin\phi +\\ +g_{yy} &=& 1+f [\sin^2\phi - cos^2\theta \cos^2\phi] +\\ +g_{yz} &=& f \sin\theta \cos\theta \cos\phi +\\ +g_{zz} &=& 1-f\sin^2\theta +\end{eqnarray*} +The extrinsic curvature is then calculated from \begin{equation} - A*exp\left[-(kp_ix^i-\omega_p (time-ra))^2\right] - cos(k_ix^i-\omega \ time), +K_{ij} = - \frac{1}{2\alpha} \dot{g}_{ij} \end{equation} -where:\\ -A = amplitude of the wave \\ -k = the wave number of the sine wave \\ -$\omega$ = the frequency of the sine wave \\ -kp = the wave number of the gaussian modulating the sine wave \\ -$\omega_p$ = the frequency of the gaussian \\ -ra = the initial position of the packet(s). \\ - -\item Teukolsky waves \\ +\section{Teukolsky waves} Teukolsky waves are quadrupole wave solutions to the linearized Einstein equations. For a full description, see: PRD 26:745 (1982). -\end{enumerate} - \section{Comments} The extrinsic curvature is initialized assuming the initial lapse is one. -- cgit v1.2.3