\documentclass{article} % Use the Cactus ThornGuide style file % (Automatically used from Cactus distribution, if you have a % thorn without the Cactus Flesh download this from the Cactus % homepage at www.cactuscode.org) \usepackage{../../../../doc/latex/cactus} \begin{document} \title{IDBrillData} \author{Carsten Gundlach, Gabrielle Allen} \date{$ $Date$ $} \maketitle % Do not delete next line % START CACTUS THORNGUIDE \begin{abstract} This thorn creates time symmetric initial data for Brill wave spacetimes. It can create both axisymmetric data (in a 3D cartesian grid), as well as data with an angular dependency. \end{abstract} \section{Purpose} The purpose of this thorn is to create (time symmetric) initial data for a Brill wave spacetime. It does so by starting from a three--metric of the form originally considered by Brill \begin{equation} ds^2 = \Psi^4 \left[ e^{2q} \left( d\rho^2 + dz^2 \right) + \rho^2 d\phi^2 \right] =\Psi^4 \hat{ds}^{2}, \label{eqn:brillmetric} \end{equation} where $q$ is a free function subject to certain regularity and fall-off conditions, $\rho=\sqrt{x^2+y^2}$ and $\Psi$ is a conformal factor to be solved for. Thorn {\tt IDBrillData} provides three choices for the $q$ function: an exponential form, ({\tt IDBrillData::q\_function = "exp"}) \begin{equation} q = a \; \frac{\rho^{2+b}}{r^2} e^{-\left( \frac{z}{\sigma_z} \right)^2} e^{-(\rho - \rho_0)^2} \left[ 1 + d \frac{\rho^m}{1 + e \rho^m} \cos^2 \left( n \phi + \phi_0 \right) \right] \end{equation} a generalized form of the $q$ function first written down by Eppley ({\tt IDBrillData::q\_function = "eppley"}) \begin{equation} q = a \left( \frac{\rho}{\sigma_\rho} \right)^b \frac{1}{1 + \left[ \left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}}\left[ 1 + d \frac{\rho^m}{1 + e \rho^m} \cos^2 \left( n \phi + \phi_0 \right) \right] \end{equation} and the (default) Gundlach $q$ function which includes the Holz form ({\tt IDBrillData::q\_function = "gundlach"}) \begin{equation} q = a \left( \frac{\rho}{\sigma_\rho} \right)^b e^{-\left[ \left( r^2 - r_0^2 \right) / \sigma_r^2 \right]^{c/2}} \left[ 1 + d \frac{\rho^m}{1 + e \rho^m} \cos^2 \left( n \phi + \phi_0 \right) \right] \end{equation} Substituting the metric into the Hamiltonian constraint gives an elliptic equation for the conformal factor $\Psi$ which is then numerically solved for a given function $q$: \begin{equation} \hat{\nabla} \Psi - \frac{\Psi}{8} \hat{R} = 0 \end{equation} where the conformal Ricci scalar is found to be \begin{eqnarray} \hat{R} = -2 \left(e^{-2q} (\partial^2_z q + \partial^2_\rho q) + \frac{1}{\rho^2} (3 (\partial_\phi q)^2 + 2 \partial_\phi q)\right) \end{eqnarray} Assuming the initial data to be time symmetric means that the momentum constraints are trivially satisfied. In the case of axisymmetry (that is $d=0$ in the above expressions for $q$), the Hamiltonian constraint can be written as an elliptic equation for $\Psi$ with just the flat space Laplacian, \begin{equation} \nabla_{flat} \Psi + \frac{\Psi}{4} (\partial_z^2 q + \partial_\rho^2 q) = 0 \end{equation} If the initial data is chosen to be {\tt ADMBase::initial\_data = "brilldata2D"} then this elliptic equation is solved rather than the equation above. \section{Generating Initial Data with IDBrillData} Brill initial data is activated by choosing the {\tt CactusEinstein/ADMBase} parameter {\tt initial\_data} to be {\tt brilldata}, or for the case of axisymmetry {\tt brilldata2D} can also be used. The parameter {\tt IDBrillData::q\_function} chooses the form of the $q$ function to be used, defaulting to the Gundlach expression. Additional {\tt IDBrillData} parameters for each form of $q$ fix the remaining freedom: \begin{itemize} \item Exponential $q$: {\tt IDBrillData::q\_function = "exp"} $(a, b,\sigma_z,\rho_0)=$ ({\tt exp\_a, exp\_b, exp\_sigmaz,exp\_rho0}) \item Eppley $q$: {\tt IDBrillData::q\_function = "eppley"} $(a, b,\sigma_\rho, r_0,\sigma_r,c)=$ ({\tt eppley\_a, eppley\_b, eppley\_sigmarho, eppley\_r0, eppley\_sigmar, eppley\_c}) \item Gundlach $q$: {\tt IDBrillData::q\_function = "gundlach"} $(a, b,\sigma_\rho, r_0,\sigma_r,c)=$ ({\tt gundlach\_a, gundlach\_b, gundlach\_sigmarho, gundlach\_r0, gundlach\_sigmar, gundlach\_c}) \item Non-axisymmetric part for each choice of $q$ $(d, m, e, n, \phi0)=$ ({\tt brill3d\_d, brill3d\_m, brill3d\_e, brill3d\_n, brill3d\_phi0}) \end{itemize} Note that the default $q$ expression is $$ q = {\tt gundlach\_a} \quad \rho^2 e^{-r^2} $$ {\tt IDBrillData} can use the elliptic solvers (type LinMetric) provided by {\tt CactusEinstein/EllSOR},\\ {\tt AEIThorns/BAM\_Elliptic}, or {\tt CactusElliptic/EllPETSc} to solve the equation resulting from the Hamiltonian constraint. In all cases the parameter {\tt thresh} sets the threshold for the elliptic solve. The choice of elliptic solver is made through the parameter {\tt brill\_solver}: \begin{itemize} \item {\tt sor}: Understands the Robin boundary condition, additional parameters control the maximum number of iterations ({\tt sor\_maxit}). \item {\tt bam}: {\tt BAM\_Elliptic} does not properly implement the elliptic infrastructure of {\tt EllBase}, and the {\tt BAM\_Elliptic} parameter to use the Robin boundary condition must be set independently of \\{\tt IDBrillWave::brill\_bound}. \end{itemize} \section{Notes} Thorn {\tt IDBrillData} understands both the ``{\tt physical}'' and ``{\tt static conformal}'' {\tt metric\_type}. In the case of a conformal metric being chosen, the conformal factor is set to $\Psi$. Currently the derivatives of the conformal factor are not calculated, so that only {\tt staticconformal::conformal\_storage = "factor"} is supported. \section{References} \subsection{Specification of Brill Waves} \begin{enumerate} \item Dieter Brill, {\bf Ann. Phys.}, 7, 466, 1959. \item Ken Eppley, {\bf Sources of Gravitational Radiation}, edited by L. Smarr (Cambridge University Press, Cambridge, England, 1979), p. 275. \end{enumerate} \subsection{Numerical Evolutions of Brill Waves} \begin{enumerate} \item {\it Gravitational Collapse of Gravitational Waves in 3D Numerical Relativity}, Miguel Alcubierre, Gabrielle Allen, Bernd Bruegmann, Gerd Lanfermann, Edward Seidel, Wai-Mo Suen, Malcolm Tobias, {\bf Phys. Rev. D61}, 041501, 2000. \end{enumerate} % Do not delete next line % END CACTUS THORNGUIDE \end{document}