This document shows that the denominator of the definition of shift_phi in the code (p2*Sigma) is equal to the denominator of equation (11) in Phys. Rev., D54, 1403­1416 Lines starting with '>' are commands for sagemath, line starting with >> are sagemath output, everything else is comments. Variable definition: > Sigma,a,r,m,R,Delta,st2,ct2=var('Sigma,a,r,m,R,Delta,st2,ct2') This is p2*Sigma from the code, st2 being sin^2(theta) = rho^2/R^2: > code_denom=(a^2+r^2)*Sigma+2*m*a^2*r*st2 Now substitute Sigma, with ct2 being cos^2(theta) = z^2/R^2: > code_denom=code_denom.substitute(Sigma=r^2+a^2*ct2) and use that st2+ct2=1: > code_denom=code_denom.substitute(ct2=1-st2) Now look at the denominator in the paper: > paper_denom=(r^2+a^2)^2-a^2*st2*Delta Substitute Delta: > paper_denom=paper_denom.substitute(Delta=r^2-2*m*r+a^2) And look at the difference between code_denom and paper_denom: > (code_denom-paper_denom).expand() >> 0 qed And here is the notebook as textblock: sage: Sigma,a,r,m,R,Delta,st2,ct2=var('Sigma,a,r,m,R,Delta,st2,ct2') sage: code_denom=(a^2+r^2)*Sigma+2*m*a^2*r*st2 sage: code_denom=code_denom.substitute(Sigma=r^2+a^2*ct2) sage: code_denom=code_denom.substitute(ct2=1-st2) sage: paper_denom=(r^2+a^2)^2-a^2*st2*Delta sage: paper_denom=paper_denom.substitute(Delta=r^2-2*m*r+a^2) sage: (code_denom-paper_denom).expand() 0