aboutsummaryrefslogtreecommitdiff
path: root/src/GRHydro_Source.cc
blob: 1858e45ebe6c85aaba5d0ca3942f123ba6efc8a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
 /*@@
   @file      GRHydro_Source.cc
   @date      Nov 29, 2013
   @author    Christian Reisswig, Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke
   @desc 
   The geometric source terms for the matter evolution
   @enddesc 
 @@*/




#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"
#include "cctk_Functions.h"

#include <cstring>
#include <cassert>

#define velx vup
#define vely (&vup[N])
#define velz (&vup[2*N])
#define Bvecx Bprim
#define Bvecy (&Bprim[N])
#define Bvecz (&Bprim[2*N])
#define Avecx Avec
#define Avecy (&Avec[N])
#define Avecz (&Avec[2*N])
#define Avecrhsx Avecrhs
#define Avecrhsy (&Avecrhs[N])
#define Avecrhsz (&Avecrhs[2*N])
#define Bconsx Bcons
#define Bconsy (&Bcons[N])
#define Bconsz (&Bcons[2*N])
#define Bconsrhsx Bconsrhs
#define Bconsrhsy (&Bconsrhs[N])
#define Bconsrhsz (&Bconsrhs[2*N])


extern "C" CCTK_INT GRHydro_UseGeneralCoordinates(const cGH * cctkGH);

template <typename T> static inline T SQR (T const & x) { return x*x; }


struct alldiff2 {
  static void apply(const cGH* const restrict cctkGH,
                    CCTK_REAL dvars[][3],
                    const CCTK_REAL* const restrict * const restrict vars, 
                    const int i, const int j, const int k,
                    const CCTK_REAL* restrict const ih,
                    const int nvars)
  {
     for (int n=0; n < nvars; ++n) {
        dvars[n][0] = (vars[n][CCTK_GFINDEX3D(cctkGH, i+1,j,k)] - vars[n][CCTK_GFINDEX3D(cctkGH, i-1,j,k)]) * 0.5 * ih[0];
        dvars[n][1] = (vars[n][CCTK_GFINDEX3D(cctkGH, i,j+1,k)] - vars[n][CCTK_GFINDEX3D(cctkGH, i,j-1,k)]) * 0.5 * ih[1];
        dvars[n][2] = (vars[n][CCTK_GFINDEX3D(cctkGH, i,j,k+1)] - vars[n][CCTK_GFINDEX3D(cctkGH, i,j,k-1)]) * 0.5 * ih[2];
     }
  }
};

struct alldiff4 {
  static void apply(const cGH* const restrict cctkGH,
                    CCTK_REAL dvars[][3],
                    const CCTK_REAL* const restrict * const restrict vars, 
                    const int i, const int j, const int k,
                    const CCTK_REAL* restrict const ih,
                    const int nvars)
  {
     for (int n=0; n < nvars; ++n) {
        dvars[n][0] = (        vars[n][CCTK_GFINDEX3D(cctkGH, i-2,j,k)] - vars[n][CCTK_GFINDEX3D(cctkGH, i+2,j,k)]
                      + 8.0 * (vars[n][CCTK_GFINDEX3D(cctkGH, i+1,j,k)] - vars[n][CCTK_GFINDEX3D(cctkGH, i-1,j,k)])) * (1.0 / 12.0) * ih[0];
        dvars[n][1] = (        vars[n][CCTK_GFINDEX3D(cctkGH, i,j-2,k)] - vars[n][CCTK_GFINDEX3D(cctkGH, i,j+2,k)]
                      + 8.0 * (vars[n][CCTK_GFINDEX3D(cctkGH, i,j+1,k)] - vars[n][CCTK_GFINDEX3D(cctkGH, i,j-1,k)])) * (1.0 / 12.0) * ih[1];
        dvars[n][2] = (        vars[n][CCTK_GFINDEX3D(cctkGH, i,j,k-2)] - vars[n][CCTK_GFINDEX3D(cctkGH, i,j,k+2)]
                      + 8.0 * (vars[n][CCTK_GFINDEX3D(cctkGH, i,j,k+1)] - vars[n][CCTK_GFINDEX3D(cctkGH, i,j,k-1)])) * (1.0 / 12.0) * ih[2];
     }
  }
};


static inline void UpperMetric(CCTK_REAL& restrict uxx,
                                CCTK_REAL& restrict uxy,
                                CCTK_REAL& restrict uxz,
                                CCTK_REAL& restrict uyy,
                                CCTK_REAL& restrict uyz,
                                CCTK_REAL& restrict uzz,
                                const CCTK_REAL det,
                                const CCTK_REAL gxx,
                                const CCTK_REAL gxy,
                                const CCTK_REAL gxz,
                                const CCTK_REAL gyy,
                                const CCTK_REAL gyz,
                                const CCTK_REAL gzz)
{
  const CCTK_REAL invdet = 1.0 / det;
  uxx = (-gyz*gyz + gyy*gzz)*invdet;
  uxy = (gxz*gyz - gxy*gzz)*invdet;
  uxz = (-gxz*gyy + gxy*gyz)*invdet;
  uyy = (-gxz*gxz + gxx*gzz)*invdet;
  uyz = (gxy*gxz - gxx*gyz)*invdet;
  uzz = (-gxy*gxy + gxx*gyy)*invdet;

  return;
}


template <class alldiff,
          bool do_mhd,
          bool do_clean_divergence,
          bool do_Avec>
static void SourceTerms_LL(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;

  /*
     Set up multipatch stuff
  */

  const CCTK_REAL * restrict vup;
  const CCTK_REAL * restrict Bprim;
  const CCTK_REAL * restrict g11;
  const CCTK_REAL * restrict g12;
  const CCTK_REAL * restrict g13;
  const CCTK_REAL * restrict g22;
  const CCTK_REAL * restrict g23;
  const CCTK_REAL * restrict g33;
  const CCTK_REAL * restrict k11;
  const CCTK_REAL * restrict k12;
  const CCTK_REAL * restrict k13;
  const CCTK_REAL * restrict k22;
  const CCTK_REAL * restrict k23;
  const CCTK_REAL * restrict k33;
  const CCTK_REAL * restrict beta1;
  const CCTK_REAL * restrict beta2;
  const CCTK_REAL * restrict beta3;

  //Multipatch related pointers
  if(GRHydro_UseGeneralCoordinates(cctkGH)) {
    vup=lvel;
    g11=gaa; g12=gab; g13=gac;
    g22=gbb; g23=gbc;
    g33=gcc;
    k11=kaa; k12=kab; k13=kac;
    k22=kbb; k23=kbc;
    k33=kcc;
    Bprim=lBvec;
    beta1 = betaa;
    beta2 = betab;
    beta3 = betac;
  } else {
    vup=vel;
    g11=gxx; g12=gxy; g13=gxz;
    g22=gyy; g23=gyz;
    g33=gzz;
    k11=kxx; k12=kxy; k13=kxz;
    k22=kyy; k23=kyz;
    k33=kzz;
    Bprim=Bvec;
    beta1 = betax;
    beta2 = betay;
    beta3 = betaz;
  }

  // TODO: for vectorization we might want to use cctk_ash (have to make sure
  // sensible values exist everywhere)
  const int nx=cctk_lsh[0];
  const int ny=cctk_lsh[1];
  const int nz=cctk_lsh[2];

  const int N = cctk_ash[0]*cctk_ash[1]*cctk_ash[2];

  const CCTK_REAL one = 1.00;
  const CCTK_REAL two = 2.00;
  const CCTK_REAL half = 0.50;
  const CCTK_REAL dx = CCTK_DELTA_SPACE(0);
  const CCTK_REAL dy = CCTK_DELTA_SPACE(1);
  const CCTK_REAL dz = CCTK_DELTA_SPACE(2);
  
  const CCTK_REAL ih[3] = { 1.0/dx, 1.0/dy, 1.0/dz };

#pragma omp parallel for
  for (int k=GRHydro_stencil; k < nz-GRHydro_stencil; ++k) {
    for (int j=GRHydro_stencil; j < ny-GRHydro_stencil; ++j) {
      for (int i=GRHydro_stencil; i < nx-GRHydro_stencil; ++i) {
        
        const int ijk = CCTK_GFINDEX3D(cctkGH, i, j, k);
        
        // TODO: these are not needed.
        const CCTK_REAL localgxx = g11[ijk];
        const CCTK_REAL localgxy = g12[ijk];
        const CCTK_REAL localgxz = g13[ijk];
        const CCTK_REAL localgyy = g22[ijk];
        const CCTK_REAL localgyz = g23[ijk];
        const CCTK_REAL localgzz = g33[ijk];

        const CCTK_REAL sqrtdet = sdetg[ijk];
        const CCTK_REAL invsqrtdet = 1./sqrtdet;
        
        CCTK_REAL uxx, uxy, uxz, uyy, uyz, uzz;
        UpperMetric(uxx, uxy, uxz, uyy, uyz, uzz, sqrtdet*sqrtdet, localgxx,
                    localgxy, localgxz, localgyy, localgyz, localgzz);
        
        const CCTK_REAL shiftx = beta1[ijk];
        const CCTK_REAL shifty = beta2[ijk];
        const CCTK_REAL shiftz = beta3[ijk];

        //  Derivatives of the lapse, metric and shift

        const int nvars = 10;
        const CCTK_REAL* const restrict vars[nvars] = { beta1, beta2, beta3, alp,
                                                     g11, g12, g13,
                                                     g22, g23,
                                                     g33 };
        CCTK_REAL dvars[nvars][3];
        
        alldiff::apply(cctkGH, dvars, vars, i, j, k, ih, nvars);
        
        const CCTK_REAL dx_betax = dvars[0][0];
        const CCTK_REAL dx_betay = dvars[1][0];
        const CCTK_REAL dx_betaz = dvars[2][0];
           
        const CCTK_REAL dy_betax = dvars[0][1];
        const CCTK_REAL dy_betay = dvars[1][1];
        const CCTK_REAL dy_betaz = dvars[2][1];
           
        const CCTK_REAL dz_betax = dvars[0][2];
        const CCTK_REAL dz_betay = dvars[1][2];
        const CCTK_REAL dz_betaz = dvars[2][2];
        
        const CCTK_REAL dx_alp = dvars[3][0];
        const CCTK_REAL dy_alp = dvars[3][1];
        const CCTK_REAL dz_alp = dvars[3][2];

        const CCTK_REAL dx_gxx = dvars[4][0];
        const CCTK_REAL dx_gxy = dvars[5][0];
        const CCTK_REAL dx_gxz = dvars[6][0];
        const CCTK_REAL dx_gyy = dvars[7][0];
        const CCTK_REAL dx_gyz = dvars[8][0];
        const CCTK_REAL dx_gzz = dvars[9][0];
        const CCTK_REAL dy_gxx = dvars[4][1];
        const CCTK_REAL dy_gxy = dvars[5][1];
        const CCTK_REAL dy_gxz = dvars[6][1];
        const CCTK_REAL dy_gyy = dvars[7][1];
        const CCTK_REAL dy_gyz = dvars[8][1];
        const CCTK_REAL dy_gzz = dvars[9][1];
        const CCTK_REAL dz_gxx = dvars[4][2];
        const CCTK_REAL dz_gxy = dvars[5][2];
        const CCTK_REAL dz_gxz = dvars[6][2];
        const CCTK_REAL dz_gyy = dvars[7][2];
        const CCTK_REAL dz_gyz = dvars[8][2];
        const CCTK_REAL dz_gzz = dvars[9][2];


        const CCTK_REAL invalp = 1.0 / alp[ijk];
        const CCTK_REAL invalp2 = SQR(invalp);
        const CCTK_REAL velxshift = velx[ijk] - shiftx*invalp;
        const CCTK_REAL velyshift = vely[ijk] - shifty*invalp;
        const CCTK_REAL velzshift = velz[ijk] - shiftz*invalp;

        // vel_i  = g_ij v^j
        // B_i = g_ij B^i

        const CCTK_REAL vlowx = g11[ijk]*velx[ijk] + g12[ijk]*vely[ijk] + g13[ijk]*velz[ijk];
        const CCTK_REAL vlowy = g12[ijk]*velx[ijk] + g22[ijk]*vely[ijk] + g23[ijk]*velz[ijk];
        const CCTK_REAL vlowz = g13[ijk]*velx[ijk] + g23[ijk]*vely[ijk] + g33[ijk]*velz[ijk];
        const CCTK_REAL Bvecxlow = do_mhd ? g11[ijk]*Bvecx[ijk] + g12[ijk]*Bvecy[ijk] + g13[ijk]*Bvecz[ijk] : 0;
        const CCTK_REAL Bvecylow = do_mhd ? g12[ijk]*Bvecx[ijk] + g22[ijk]*Bvecy[ijk] + g23[ijk]*Bvecz[ijk] : 0;
        const CCTK_REAL Bveczlow = do_mhd ? g13[ijk]*Bvecx[ijk] + g23[ijk]*Bvecy[ijk] + g33[ijk]*Bvecz[ijk] : 0;

        //  B^i v_i (= b^0/u^0)
        const CCTK_REAL Bdotv = do_mhd ? vlowx*Bvecx[ijk]+vlowy*Bvecy[ijk]+vlowz*Bvecz[ijk] : 0;

        // v^2 = v_i v^i; w=(1-v^2)^{-1/2}

        const CCTK_REAL v2 = vlowx*velx[ijk] + vlowy*vely[ijk] + vlowz*velz[ijk];
        const CCTK_REAL invw = sqrt(1.0-v2);
        const CCTK_REAL w = 1./invw;

        // b^2 = B^i B_i / w^2 + (b^0/u^0)^2

        const CCTK_REAL b2 = do_mhd ? (Bvecx[ijk]*Bvecxlow+Bvecy[ijk]*Bvecylow+Bvecz[ijk]*Bveczlow)*SQR(invw)+SQR(Bdotv) : 0;

        // b_i = B_i/w +w*(B dot v)*v_i
        const CCTK_REAL bxlow = do_mhd ? Bvecxlow*invw+w*Bdotv*vlowx : 0;
        const CCTK_REAL bylow = do_mhd ? Bvecylow*invw+w*Bdotv*vlowy : 0;
        const CCTK_REAL bzlow = do_mhd ? Bveczlow*invw+w*Bdotv*vlowz : 0;


        // These are the contravariant components
        const CCTK_REAL bt = do_mhd ? w*invalp*Bdotv : 0;
        const CCTK_REAL bx = do_mhd ? Bvecx[ijk]*invw+w*Bdotv*velxshift : 0;
        const CCTK_REAL by = do_mhd ? Bvecy[ijk]*invw+w*Bdotv*velyshift : 0;
        const CCTK_REAL bz = do_mhd ? Bvecz[ijk]*invw+w*Bdotv*velzshift : 0;

        // TODO: all of these can be expressed much more easily in terms of the
        // conservatives
        const CCTK_REAL rhohstarW2 = (rho[ijk]*(one + eps[ijk]) + (press[ijk] + b2)) *
                                       SQR(w);
        const CCTK_REAL pstar = press[ijk]+0.50*b2;

        //  For a change, these are T^{ij}

        // TODO: strict IEEE compliance does not let the compiler remove "+ 0"
        // terms, so we have to do something else here
        const CCTK_REAL t00 = (rhohstarW2 - pstar)*invalp2-SQR(bt);
        const CCTK_REAL t0x = rhohstarW2*velxshift*invalp +
             pstar*shiftx*invalp2-bt*bx;
        const CCTK_REAL t0y = rhohstarW2*velyshift*invalp +
             pstar*shifty*invalp2-bt*by;
        const CCTK_REAL t0z = rhohstarW2*velzshift*invalp +
             pstar*shiftz*invalp2-bt*bz;
        const CCTK_REAL txx = rhohstarW2*velxshift*velxshift +
             pstar*(uxx - shiftx*shiftx*invalp2)-SQR(bx);
        const CCTK_REAL txy = rhohstarW2*velxshift*velyshift +
             pstar*(uxy - shiftx*shifty*invalp2)-bx*by;
        const CCTK_REAL txz = rhohstarW2*velxshift*velzshift +
             pstar*(uxz - shiftx*shiftz*invalp2)-bx*bz;
        const CCTK_REAL tyy = rhohstarW2*velyshift*velyshift +
             pstar*(uyy - shifty*shifty*invalp2)-SQR(by);
        const CCTK_REAL tyz = rhohstarW2*velyshift*velzshift +
             pstar*(uyz - shifty*shiftz*invalp2)-by*bz;
        const CCTK_REAL tzz = rhohstarW2*velzshift*velzshift +
             pstar*(uzz - shiftz*shiftz*invalp2)-SQR(bz);

//        Contract the shift with the extrinsic curvature

        const CCTK_REAL shiftshiftk = shiftx*shiftx*k11[ijk] +
                                      shifty*shifty*k22[ijk] +
                                      shiftz*shiftz*k33[ijk] +
             two*(shiftx*shifty*k12[ijk] +
                  shiftx*shiftz*k13[ijk] +
                  shifty*shiftz*k23[ijk]);

        const CCTK_REAL shiftkx = shiftx*k11[ijk] + shifty*k12[ijk] + shiftz*k13[ijk];
        const CCTK_REAL shiftky = shiftx*k12[ijk] + shifty*k22[ijk] + shiftz*k23[ijk];
        const CCTK_REAL shiftkz = shiftx*k13[ijk] + shifty*k23[ijk] + shiftz*k33[ijk];

//        Contract the matter terms with the extrinsic curvature

        const CCTK_REAL sumTK = txx*k11[ijk] + tyy*k22[ijk] + tzz*k33[ijk]
                         + two*(txy*k12[ijk] + txz*k13[ijk] + tyz*k23[ijk]);

//        Update term for tau
        
        const CCTK_REAL tau_source = t00*
             (shiftshiftk - (shiftx*dx_alp + shifty*dy_alp + shiftz*dz_alp) )
             + t0x*(-dx_alp + two*shiftkx)
             + t0y*(-dy_alp + two*shiftky)
             + t0z*(-dz_alp + two*shiftkz)
             + sumTK;

//        The following looks very little like the terms in the
//        standard papers. Take a look in the ThornGuide to see why
//        it is really the same thing.

//        Contract the shift with derivatives of the metric

        const CCTK_REAL halfshiftdgx = half*(shiftx*shiftx*dx_gxx +
             shifty*shifty*dx_gyy + shiftz*shiftz*dx_gzz) +
             shiftx*shifty*dx_gxy + shiftx*shiftz*dx_gxz +
             shifty*shiftz*dx_gyz;
        const CCTK_REAL halfshiftdgy = half*(shiftx*shiftx*dy_gxx +
             shifty*shifty*dy_gyy + shiftz*shiftz*dy_gzz) +
             shiftx*shifty*dy_gxy + shiftx*shiftz*dy_gxz +
             shifty*shiftz*dy_gyz;
        const CCTK_REAL halfshiftdgz = half*(shiftx*shiftx*dz_gxx +
             shifty*shifty*dz_gyy + shiftz*shiftz*dz_gzz) +
             shiftx*shifty*dz_gxy + shiftx*shiftz*dz_gxz +
             shifty*shiftz*dz_gyz;

//        Contract the matter with derivatives of the metric

        const CCTK_REAL halfTdgx = half*(txx*dx_gxx + tyy*dx_gyy + tzz*dx_gzz) +
             txy*dx_gxy + txz*dx_gxz + tyz*dx_gyz;
        const CCTK_REAL halfTdgy = half*(txx*dy_gxx + tyy*dy_gyy + tzz*dy_gzz) +
             txy*dy_gxy + txz*dy_gxz + tyz*dy_gyz;
        const CCTK_REAL halfTdgz = half*(txx*dz_gxx + tyy*dz_gyy + tzz*dz_gzz) +
             txy*dz_gxy + txz*dz_gxz + tyz*dz_gyz;

     
       const CCTK_REAL sx_source = t00*
             (halfshiftdgx - alp[ijk]*dx_alp) + halfTdgx +
             t0x*(shiftx*dx_gxx + shifty*dx_gxy + shiftz*dx_gxz) +
             t0y*(shiftx*dx_gxy + shifty*dx_gyy + shiftz*dx_gyz) +
             t0z*(shiftx*dx_gxz + shifty*dx_gyz + shiftz*dx_gzz) +
             rhohstarW2*invalp*(vlowx*dx_betax + vlowy*dx_betay + vlowz*dx_betaz) -
             bt*(bxlow*dx_betax + bylow*dx_betay + bzlow*dx_betaz);
        
       const CCTK_REAL sy_source = t00*
             (halfshiftdgy - alp[ijk]*dy_alp) + halfTdgy +
             t0x*(shiftx*dy_gxx + shifty*dy_gxy + shiftz*dy_gxz) +
             t0y*(shiftx*dy_gxy + shifty*dy_gyy + shiftz*dy_gyz) +
             t0z*(shiftx*dy_gxz + shifty*dy_gyz + shiftz*dy_gzz) +
             rhohstarW2*invalp*(vlowx*dy_betax + vlowy*dy_betay + vlowz*dy_betaz) -
             bt*(bxlow*dy_betax + bylow*dy_betay + bzlow*dy_betaz);

       const CCTK_REAL sz_source = t00*
             (halfshiftdgz - alp[ijk]*dz_alp) + halfTdgz +
             t0x*(shiftx*dz_gxx + shifty*dz_gxy + shiftz*dz_gxz) +
             t0y*(shiftx*dz_gxy + shifty*dz_gyy + shiftz*dz_gyz) +
             t0z*(shiftx*dz_gxz + shifty*dz_gyz + shiftz*dz_gzz) +
             rhohstarW2*invalp*(vlowx*dz_betax + vlowy*dz_betay + vlowz*dz_betaz) -
             bt*(bxlow*dz_betax + bylow*dz_betay + bzlow*dz_betaz);

        densrhs[ijk] = 0.0;
        srhs[ijk]        = alp[ijk]*sqrtdet*sx_source;
        srhs[ijk + N]    = alp[ijk]*sqrtdet*sy_source;
        srhs[ijk + 2*N]  = alp[ijk]*sqrtdet*sz_source;
        taurhs[ijk]      = alp[ijk]*sqrtdet*tau_source;

        if (do_Avec) {

          // B^i and A^i both live in cell centers currently
          const CCTK_REAL Avcx_source = alp[ijk]*sqrtdet*(velyshift*Bvecz[ijk] - velzshift*Bvecy[ijk]);
          const CCTK_REAL Avcy_source = alp[ijk]*sqrtdet*(velzshift*Bvecx[ijk] - velxshift*Bvecz[ijk]);
          const CCTK_REAL Avcz_source = alp[ijk]*sqrtdet*(velxshift*Bvecy[ijk] - velyshift*Bvecx[ijk]);

          Avecrhsx[ijk] = Avcx_source;
          Avecrhsy[ijk] = Avcy_source;
          Avecrhsz[ijk] = Avcz_source;

        }

        if(do_clean_divergence) {
   
           // g^{jk} d_i g_{kj} = d_i (g) / det
           const CCTK_REAL dx_det_bydet = uxx*dx_gxx + uyy*dx_gyy + uzz*dx_gzz +
                two*(uxy*dx_gxy+uxz*dx_gxz+uyz*dx_gyz);
           const CCTK_REAL dy_det_bydet = uxx*dy_gxx + uyy*dy_gyy + uzz*dy_gzz +
                two*(uxy*dy_gxy+uxz*dy_gxz+uyz*dy_gyz);
           const CCTK_REAL dz_det_bydet = uxx*dz_gxx + uyy*dz_gyy + uzz*dz_gzz +
                two*(uxy*dz_gxy+uxz*dz_gxz+uyz*dz_gyz);

           // g^{ik} d_k g_{li}
           const CCTK_REAL gdg_x = uxx*dx_gxx + uxy*dy_gxx + uxz*dz_gxx +
                   uxy*dx_gxy + uyy*dy_gxy + uyz*dz_gxy +
                   uxz*dx_gxz + uyz*dy_gxz + uzz*dz_gxz;

           const CCTK_REAL gdg_y = uxx*dx_gxy + uxy*dy_gxy + uxz*dz_gxy +
                   uxy*dx_gyy + uyy*dy_gyy + uyz*dz_gyy +
                   uxz*dx_gyz + uyz*dy_gyz + uzz*dz_gyz;

           const CCTK_REAL gdg_z = uxx*dx_gxz + uxy*dy_gxz + uxz*dz_gxz +
                   uxy*dx_gyz + uyy*dy_gyz + uyz*dz_gyz +
                   uxz*dx_gzz + uyz*dy_gzz + uzz*dz_gzz;

           CCTK_REAL bvcx_source, bvcy_source, bvcz_source;
           psidcrhs[ijk] = -one * (kap_dc*alp[ijk] + 
                dx_betax + dy_betay + dz_betaz ) * psidc[ijk] + 
                Bconsx[ijk] * (dx_alp - half*alp[ijk] * 
                 ( uxx*dx_gxx + uyy*dx_gyy + uzz*dx_gzz + two*uxy*dx_gxy + 
                   two*uxz*dx_gxz + two*uyz*dx_gyz ) )*invsqrtdet + 
                Bconsy[ijk] * (dy_alp - half*alp[ijk] * 
                 ( uxx*dy_gxx + uyy*dy_gyy + uzz*dy_gzz + two*uxy*dy_gxy + 
                   two*uxz*dy_gxz + two*uyz*dy_gyz ) )*invsqrtdet + 
                Bconsz[ijk] * (dz_alp - half*alp[ijk] * 
                 ( uxx*dz_gxx + uyy*dz_gyy + uzz*dz_gzz + two*uxy*dz_gxy + 
                   two*uxz*dz_gxz + two*uyz*dz_gyz ) )*invsqrtdet;

           bvcx_source = -one * ( Bconsx[ijk]*dx_betax + 
                Bconsy[ijk]*dy_betax + Bconsz[ijk]*dz_betax ) + 
                psidc[ijk]*sqrtdet*(( uxx*dx_alp+uxy*dy_alp+uxz*dz_alp ) + 
                alp[ijk]*(half*( uxx*dx_det_bydet + 
                  uxy*dy_det_bydet + uxz*dz_det_bydet) - 
                ( uxx*gdg_x + uxy*gdg_y + uxz*gdg_z )));

           bvcy_source = -one * ( Bconsx[ijk]*dx_betay + 
                Bconsy[ijk]*dy_betay + Bconsz[ijk]*dz_betay ) + 
                psidc[ijk]*sqrtdet*(( uxy*dx_alp+uyy*dy_alp+uyz*dz_alp ) + 
                alp[ijk]*(half*( uxy*dx_det_bydet + 
                  uyy*dy_det_bydet + uyz*dz_det_bydet ) - 
                ( uxy*gdg_x + uyy*gdg_y + uyz*gdg_z )));

           bvcz_source = -one * ( Bconsx[ijk]*dx_betaz + 
                Bconsy[ijk]*dy_betaz + Bconsz[ijk]*dz_betaz ) + 
                psidc[ijk]*sqrtdet*(( uxz*dx_alp+uyz*dy_alp+uzz*dz_alp ) + 
                alp[ijk]*(half*( uxz*dx_det_bydet + 
                  uyz*dy_det_bydet + uzz*dz_det_bydet ) - 
                ( uxz*gdg_x + uyz*gdg_y + uzz*gdg_z )));

           Bconsrhsx[ijk] = bvcx_source;
           Bconsrhsy[ijk] = bvcy_source;
           Bconsrhsz[ijk] = bvcz_source;
        } // if(do_clean_divergence)

      } // for(i
    } // for(j
  } // for(k

#if(0) // poison edges of domain
  static int last_iteration_seen = -1;
  static int reflevel = -1;
  static int mol_substep;
  if(last_iteration_seen != cctk_iteration || reflevel != *GRHydro_reflevel) {
    last_iteration_seen = cctk_iteration;
    reflevel = *GRHydro_reflevel;
    mol_substep = 0;
  } else {
    mol_substep += 1;
  }
  for(k = 0 ; k < GRHydro_stencil*mol_substep ; ++k) {
    for(j = 0 ; j < cctk_ash[1] ; ++j) {
      for(i = 0 ; i < cctk_ash[0] ; ++i) {
        dens[CCTK_GFINDEX3D(i,j,k)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        tau[CCTK_GFINDEX3D(i,j,k)] = -1e100
        if(do_mhd) {
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        }
        if(do_clean_divergene)
          psidc[CCTK_GFINDEX3D(i,j,k)] = -1e100
      }
    }
  }
  for(k = cctk_ash[2]-GRHydro_stencil*mol_substep ; k < cctk_ash[2] ; ++k) {
    for(j = 0 ; j < cctk_ash[1] ; ++j) {
      for(i = 0 ; i < cctk_ash[0] ; ++i) {
        dens[CCTK_GFINDEX3D(i,j,k)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        tau[CCTK_GFINDEX3D(i,j,k)] = -1e100
        if(do_mhd) {
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        }
        if(do_clean_divergene)
          psidc[CCTK_GFINDEX3D(i,j,k)] = -1e100
      }
    }
  }
  for(i = 0 ; i < GRHydro_stencil*mol_substep ; ++i) {
    for(k = 0 ; k < cctk_ash[2] ; ++k) {
      for(j = 0 ; j < cctk_ash[1] ; ++j) {
        dens[CCTK_GFINDEX3D(i,j,k)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        tau[CCTK_GFINDEX3D(i,j,k)] = -1e100
        if(do_mhd) {
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        }
        if(do_clean_divergene)
          psidc[CCTK_GFINDEX3D(i,j,k)] = -1e100
      }
    }
  }
  for(i = cctk_ash[0]-GRHydro_stencil*mol_substep ; i < cctk_ash[0] ; ++i) {
    for(k = 0 ; k < cctk_ash[2] ; ++k) {
      for(j = 0 ; j < cctk_ash[1] ; ++j) {
        dens[CCTK_GFINDEX3D(i,j,k)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        tau[CCTK_GFINDEX3D(i,j,k)] = -1e100
        if(do_mhd) {
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        }
        if(do_clean_divergene)
          psidc[CCTK_GFINDEX3D(i,j,k)] = -1e100
      }
    }
  }
  for(j = 0 ; j < GRHydro_stencil*mol_substep ; ++j) {
    for(i = 0 ; i < cctk_ash[0] ; ++i) {
      for(k = 0 ; k < cctk_ash[2] ; ++k) {
        dens[CCTK_GFINDEX3D(i,j,k)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        tau[CCTK_GFINDEX3D(i,j,k)] = -1e100
        if(do_mhd) {
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        }
        if(do_clean_divergene)
          psidc[CCTK_GFINDEX3D(i,j,k)] = -1e100
      }
    }
  }
  for(j = cctk_ash[1]-GRHydro_stencil*mol_substep ; j < cctk_ash[1] ; ++j) {
    for(i = 0 ; i < cctk_ash[0] ; ++i) {
      for(k = 0 ; k < cctk_ash[2] ; ++k) {
        dens[CCTK_GFINDEX3D(i,j,k)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
        Scon[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        tau[CCTK_GFINDEX3D(i,j,k)] = -1e100
        if(do_mhd) {
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,0)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,1)] = -1e100
          Bcons[CCTK_VECTGFINDEX3D(i,j,k,2)] = -1e100
        }
        if(do_clean_divergene)
          psidc[CCTK_GFINDEX3D(i,j,k)] = -1e100
      }
    }
  }
#endif
}

extern "C" void SourceTerms(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;

  void (*sources)(CCTK_ARGUMENTS) = NULL;
  const bool do_Avec = CCTK_EQUALS(Bvec_evolution_method, "GRHydro_Avec");
#define T(e,t) (!!(e)==(t))
#define T3(t1,t2,t3)                \
        (T(*evolve_MHD,t1)      &&  \
         T(clean_divergence,t2) &&  \
         T(do_Avec,t3))
#define SET_SOURCES(df,t1,t2,t3) \
        if(T3(t1,t2,t3))         \
          sources=SourceTerms_LL<df,t1,t2,t3>;
  enum do_t {noMHD=0,MHD=1,noDC=0,DC=1,noAVec=0,AVec=1};

  // order of arguments:
  // do_MHD do_clean_divergence do_Avec
  if(spatial_order == 4) {
    // no MHD
    SET_SOURCES(alldiff4,noMHD,noDC,noAVec)

    // not all combinations make sense for MHD, we list the ones that do
    SET_SOURCES(alldiff4,  MHD,noDC,noAVec)
    SET_SOURCES(alldiff4,  MHD,  DC,noAVec)
    SET_SOURCES(alldiff4,  MHD,  DC,noAVec)
    SET_SOURCES(alldiff4,  MHD,noDC,  AVec)
  } else if(spatial_order == 2) {
    // no MHD
    SET_SOURCES(alldiff2,noMHD,noDC,noAVec)

    // not all combinations make sense for MHD, we list the ones that do
    SET_SOURCES(alldiff2,  MHD,noDC,noAVec)
    SET_SOURCES(alldiff2,  MHD,  DC,noAVec)
    SET_SOURCES(alldiff2,  MHD,  DC,noAVec)
    SET_SOURCES(alldiff2,  MHD,noDC,  AVec)
  }

  if(sources == NULL) {
    CCTK_VError(__LINE__, __FILE__, CCTK_THORNSTRING, 
                "No source terms can be computed for combination "
                "do_mhd = %d "
                "do_clean_divergence = %d "
                "do_Avec = %d spatial_order = %d",
                int(*evolve_MHD),
                int(clean_divergence),
                int(do_Avec), int(spatial_order));
  }

  // do some non-time critial operations here to reduce the number of templates 
  if(transport_constraints) {
    const int N = cctk_ash[0]*cctk_ash[1]*cctk_ash[2];
    // not much need to OpenMP parallelize this since it is pure memory access
    // and memset is highly optimized
    memset(Evec, 0, sizeof(Evec[0])*3*N);
    // I think IEEE requires an all zero byte double to be 0.
    assert(Evec[0] == 0.);
  }
  if(*evolve_Y_e) {
    const int N = cctk_ash[0]*cctk_ash[1]*cctk_ash[2];
    // not much need to OpenMP parallelize this since it is pure memory access
    // and memset is highly optimized
    memset(Y_e_con_rhs, 0, sizeof(Y_e_con_rhs[0])*N);
    // I think IEEE requires an all zero byte double to be 0.
    assert(Y_e_con_rhs[0] == 0.);
  }
  if(number_of_tracers>0) {
    const int N = cctk_ash[0]*cctk_ash[1]*cctk_ash[2];
    // not much need to OpenMP parallelize this since it is pure memory access
    // and memset is highly optimized
    memset(cons_tracerrhs, 0, sizeof(cons_tracerrhs[0])*number_of_tracers*N);
    // I think IEEE requires an all zero byte double to be 0.
    assert(cons_tracerrhs[0] == 0.);
  }
  if(*evolve_entropy) {
    const int N = cctk_ash[0]*cctk_ash[1]*cctk_ash[2];
    // not much need to OpenMP parallelize this since it is pure memory access
    // and memset is highly optimized
    memset(entropyrhs, 0, sizeof(entropyrhs[0])*N);
    // I think IEEE requires an all zero byte double to be 0.
    assert(entropyrhs[0] == 0.);
  }
  if(track_divB) {
    const int N = cctk_ash[0]*cctk_ash[1]*cctk_ash[2];
    // not much need to OpenMP parallelize this since it is pure memory access
    // and memset is highly optimized
    memset(divB, 0, sizeof(divB[0])*N);
    // I think IEEE requires an all zero byte double to be 0.
    assert(divB[0] == 0.);
  }

  sources(CCTK_PASS_CTOC);
}