/*@@ @file GRHydro_HLLEPolyM.F90 @date Aug 30, 2010 @author Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke, Pedro Montero, Toni Font @desc The HLLE solver. Called from the wrapper function, so works in all directions. @enddesc @@*/ #include "cctk.h" #include "cctk_Parameters.h" #include "cctk_Arguments.h" #include "cctk_Functions.h" #include "GRHydro_Macros.h" #include "SpaceMask.h" /*@@ @routine GRHydro_HLLEM @date Aug 30, 2010 @author Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke, Pedro Montero, Toni Font @desc The HLLE solver. Sufficiently simple that its just one big routine. @enddesc @calls @calledby @history Altered from Cactus 3 routines originally written by Toni Font. @endhistory @@*/ subroutine GRHydro_HLLEM(CCTK_ARGUMENTS) USE GRHydro_EigenproblemM USE GRHydro_Scalars implicit none ! save memory when MP is not used ! TARGET as to be before DECLARE_CCTK_ARGUMENTS for gcc 4.1 TARGET gaa, gab, gac, gbb, gbc, gcc TARGET gxx, gxy, gxz, gyy, gyz, gzz TARGET betaa, betab, betac TARGET betax, betay, betaz DECLARE_CCTK_ARGUMENTS DECLARE_CCTK_PARAMETERS integer :: i, j, k, m CCTK_REAL, dimension(8) :: cons_p,cons_m,fplus,fminus,f1,qdiff CCTK_REAL, dimension(10) :: prim_p, prim_m CCTK_REAL, dimension(5) :: lamminus,lamplus CCTK_REAL :: charmin, charmax, charpm,chartop,avg_alp,avg_det, sdet CCTK_REAL :: gxxh, gxyh, gxzh, gyyh, gyzh, gzzh, uxxh, uxyh, & uxzh, uyyh, uyzh, uzzh, avg_beta, usendh CCTK_REAL :: rhoenth_p, rhoenth_m, avg_betax, avg_betay, avg_betaz CCTK_REAL :: vxtp,vytp,vztp,vxtm,vytm,vztm,ab0p,ab0m,b2p,b2m,bdotvp,bdotvm CCTK_REAL :: wp,wm,v2p,v2m,bxlowp,bxlowm,bylowp,bylowm,bzlowp,bzlowm,vA2m,vA2p CCTK_REAL :: Bvecxlowp,Bvecxlowm,Bvecylowp,Bvecylowm,Bveczlowp,Bveczlowm CCTK_REAL :: pressstarp,pressstarm,velxlowp,velxlowm,velylowp,velylowm,velzlowp,velzlowm CCTK_REAL :: entropyconsp,entropyconsm,entropyp,entropym,entropyf,entropydiff,entropyfp,entropyfm CCTK_REAL :: psidcp, psidcm, psidcf, psidcdiff, psidcfp, psidcfm CCTK_REAL :: charmax_dc, charmin_dc, charpm_dc CCTK_INT :: type_bits, trivial CCTK_REAL :: xtemp ! save memory when MP is not used CCTK_INT :: GRHydro_UseGeneralCoordinates CCTK_REAL, DIMENSION(:,:,:), POINTER :: g11, g12, g13, g22, g23, g33 CCTK_REAL, DIMENSION(:,:,:), POINTER :: beta1, beta2, beta3 if (GRHydro_UseGeneralCoordinates(cctkGH).ne.0) then g11 => gaa g12 => gab g13 => gac g22 => gbb g23 => gbc g33 => gcc beta1 => betaa beta2 => betab beta3 => betac else g11 => gxx g12 => gxy g13 => gxz g22 => gyy g23 => gyz g33 => gzz beta1 => betax beta2 => betay beta3 => betaz end if #define gxx faulty_gxx #define gxy faulty_gxy #define gxz faulty_gxz #define gyy faulty_gyy #define gyz faulty_gyz #define gzz faulty_gzz #define betax faulty_betax #define betay faulty_betay #define betaz faulty_betaz #define vel faulty_vel #define Bvec faulty_Bvec if (flux_direction == 1) then call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemX") call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemX", & &"trivial") else if (flux_direction == 2) then call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemY") call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemY", & &"trivial") else if (flux_direction == 3) then call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemZ") call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemZ", & &"trivial") else call CCTK_ERROR("Flux direction not x,y,z") end if ! constraint transport needs to be able to average fluxes in the directions ! other that flux_direction !$OMP PARALLEL DO PRIVATE(k,j,i,f1,lamminus,lamplus,cons_p,cons_m,fplus,fminus,qdiff,psidcf,psidcp,psidcm,prim_p,prim_m,& !$OMP avg_betax,avg_betay,avg_betaz,avg_beta,avg_alp,& !$OMP gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,avg_det,sdet,uxxh,uxyh,uxzh,uyyh,uyzh,uzzh,& !$OMP vxtp,vxtm,vytp,vytm,vztp,vztm,& !$OMP velxlowp,velxlowm,Bvecxlowp,Bvecxlowm,& !$OMP velylowp,velylowm,Bvecylowp,Bvecylowm,& !$OMP velzlowp,velzlowm,Bveczlowp,Bveczlowm,& !$OMP bdotvp,bdotvm,b2p,b2m,v2p,v2m,wp,wm,& !$OMP bxlowp,bxlowm,bylowp,bylowm,bzlowp,bzlowm,& !$OMP rhoenth_p,rhoenth_m,ab0p,ab0m,vA2p,vA2m,pressstarp,pressstarm,& !$OMP usendh,psidcdiff,psidcfp,psidcfm,charmin,charmax,chartop,charpm,& !$OMP charmin_dc,charmax_dc,charpm_dc,m,xtemp,& !$OMP entropyconsp,entropyconsm,entropyp,entropym,entropyf,entropydiff,entropyfp,entropyfm) do k = GRHydro_stencil, cctk_lsh(3) - GRHydro_stencil + transport_constraints*(1-zoffset) do j = GRHydro_stencil, cctk_lsh(2) - GRHydro_stencil + transport_constraints*(1-yoffset) do i = GRHydro_stencil, cctk_lsh(1) - GRHydro_stencil + transport_constraints*(1-xoffset) f1 = 0.d0 lamminus = 0.d0 lamplus = 0.d0 cons_p = 0.d0 cons_m = 0.d0 fplus = 0.d0 fminus = 0.d0 qdiff = 0.d0 if(clean_divergence.ne.0) then psidcp = 0.d0 psidcm = 0.d0 endif !!$ Set the left (p for plus) and right (m_i for minus, i+1) states cons_p(1) = densplus(i,j,k) cons_p(2) = sxplus(i,j,k) cons_p(3) = syplus(i,j,k) cons_p(4) = szplus(i,j,k) cons_p(5) = tauplus(i,j,k) cons_p(6) = Bconsxplus(i,j,k) cons_p(7) = Bconsyplus(i,j,k) cons_p(8) = Bconszplus(i,j,k) cons_m(1) = densminus(i+xoffset,j+yoffset,k+zoffset) cons_m(2) = sxminus(i+xoffset,j+yoffset,k+zoffset) cons_m(3) = syminus(i+xoffset,j+yoffset,k+zoffset) cons_m(4) = szminus(i+xoffset,j+yoffset,k+zoffset) cons_m(5) = tauminus(i+xoffset,j+yoffset,k+zoffset) cons_m(6) = Bconsxminus(i+xoffset,j+yoffset,k+zoffset) cons_m(7) = Bconsyminus(i+xoffset,j+yoffset,k+zoffset) cons_m(8) = Bconszminus(i+xoffset,j+yoffset,k+zoffset) prim_p(1) = rhoplus(i,j,k) prim_p(2) = velxplus(i,j,k) prim_p(3) = velyplus(i,j,k) prim_p(4) = velzplus(i,j,k) prim_p(5) = epsplus(i,j,k) prim_p(6) = pressplus(i,j,k) prim_p(7) = w_lorentzplus(i,j,k) prim_p(8) = Bvecxplus(i,j,k) prim_p(9) = Bvecyplus(i,j,k) prim_p(10) = Bveczplus(i,j,k) prim_m(1) = rhominus(i+xoffset,j+yoffset,k+zoffset) prim_m(2) = velxminus(i+xoffset,j+yoffset,k+zoffset) prim_m(3) = velyminus(i+xoffset,j+yoffset,k+zoffset) prim_m(4) = velzminus(i+xoffset,j+yoffset,k+zoffset) prim_m(5) = epsminus(i+xoffset,j+yoffset,k+zoffset) prim_m(6) = pressminus(i+xoffset,j+yoffset,k+zoffset) prim_m(7) = w_lorentzminus(i+xoffset,j+yoffset,k+zoffset) prim_m(8) = Bvecxminus(i+xoffset,j+yoffset,k+zoffset) prim_m(9) = Bvecyminus(i+xoffset,j+yoffset,k+zoffset) prim_m(10)= Bveczminus(i+xoffset,j+yoffset,k+zoffset) if(clean_divergence.ne.0) then psidcp = psidcplus(i,j,k) psidcm = psidcminus(i+xoffset,j+yoffset,k+zoffset) endif if(evolve_entropy.ne.0) then entropyp = entropyplus(i,j,k) entropym = entropyminus(i+xoffset,j+yoffset,k+zoffset) entropyconsp = entropyconsplus(i,j,k) entropyconsm = entropyconsminus(i+xoffset,j+yoffset,k+zoffset) endif !!$ Calculate various metric terms here. !!$ Note also need the average of the lapse at the !!$ left and right points. !!$ !!$ In MHD, we need all three shift components regardless of the flux direction avg_betax = 0.5d0 * (beta1(i+xoffset,j+yoffset,k+zoffset) + & beta1(i,j,k)) avg_betay = 0.5d0 * (beta2(i+xoffset,j+yoffset,k+zoffset) + & beta2(i,j,k)) avg_betaz = 0.5d0 * (beta3(i+xoffset,j+yoffset,k+zoffset) + & beta3(i,j,k)) if (flux_direction == 1) then avg_beta=avg_betax else if (flux_direction == 2) then avg_beta=avg_betay else if (flux_direction == 3) then avg_beta=avg_betaz else call CCTK_ERROR("Flux direction not x,y,z") end if avg_alp = 0.5 * (alp(i,j,k) + alp(i+xoffset,j+yoffset,k+zoffset)) gxxh = 0.5d0 * (g11(i+xoffset,j+yoffset,k+zoffset) + g11(i,j,k)) gxyh = 0.5d0 * (g12(i+xoffset,j+yoffset,k+zoffset) + g12(i,j,k)) gxzh = 0.5d0 * (g13(i+xoffset,j+yoffset,k+zoffset) + g13(i,j,k)) gyyh = 0.5d0 * (g22(i+xoffset,j+yoffset,k+zoffset) + g22(i,j,k)) gyzh = 0.5d0 * (g23(i+xoffset,j+yoffset,k+zoffset) + g23(i,j,k)) gzzh = 0.5d0 * (g33(i+xoffset,j+yoffset,k+zoffset) + g33(i,j,k)) avg_det = SPATIAL_DETERMINANT(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh) sdet = sqrt(avg_det) call UpperMetric(uxxh, uxyh, uxzh, uyyh, uyzh, uzzh, & avg_det,gxxh, gxyh, gxzh, & gyyh, gyzh, gzzh) vxtp = prim_p(2)-avg_betax/avg_alp vytp = prim_p(3)-avg_betay/avg_alp vztp = prim_p(4)-avg_betaz/avg_alp vxtm = prim_m(2)-avg_betax/avg_alp vytm = prim_m(3)-avg_betay/avg_alp vztm = prim_m(4)-avg_betaz/avg_alp call calc_vlow_blow(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh, & prim_p(2),prim_p(3),prim_p(4),prim_p(8),prim_p(9),prim_p(10), & velxlowp,velylowp,velzlowp,Bvecxlowp,Bvecylowp,Bveczlowp, & bdotvp,b2p,v2p,wp,bxlowp,bylowp,bzlowp) call calc_vlow_blow(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh, & prim_m(2),prim_m(3),prim_m(4),prim_m(8),prim_m(9),prim_m(10), & velxlowm,velylowm,velzlowm,Bvecxlowm,Bvecylowm,Bveczlowm, & bdotvm,b2m,v2m,wm,bxlowm,bylowm,bzlowm) rhoenth_p = prim_p(1)*(1.d0+prim_p(5))+prim_p(6) rhoenth_m = prim_m(1)*(1.d0+prim_m(5))+prim_m(6) ab0p = wp*bdotvp ab0m = wm*bdotvm vA2p = b2p/(rhoenth_p+b2p) vA2m = b2m/(rhoenth_m+b2m) !!$ p^* = p+b^2/2 in Anton et al. pressstarp = prim_p(6)+0.5d0*b2p pressstarm = prim_m(6)+0.5d0*b2m !!$ If the Riemann problem is trivial, just calculate the fluxes from the !!$ left state and skip to the next cell if (SpaceMask_CheckStateBitsF90(space_mask, i, j, k, type_bits, trivial)) then !!$ we now pass in the B-field as conserved and flux, the vtilde's instead of v's, !!$ pressstar instead of P, b_i, alp b^0, w, metric determinant, !!$ alp, and beta in the flux dir if (flux_direction == 1) then call num_x_fluxM(cons_p(1),cons_p(2),cons_p(3),cons_p(4),cons_p(5),& cons_p(6),cons_p(7),cons_p(8),& f1(1),f1(2),f1(3),f1(4),f1(5),f1(6),f1(7),f1(8),& vxtp,vytp,vztp,pressstarp,bxlowp,bylowp,bzlowp,ab0p,wp, & avg_det,avg_alp,avg_beta) if(clean_divergence.ne.0) then f1(6)=f1(6) + 1.0d0*sdet*uxxh*psidcp - cons_p(6)*avg_betax/avg_alp f1(7)=f1(7) + 1.0d0*sdet*uxyh*psidcp - cons_p(6)*avg_betay/avg_alp f1(8)=f1(8) + 1.0d0*sdet*uxzh*psidcp - cons_p(6)*avg_betaz/avg_alp psidcf = cons_p(6)/sdet-psidcp*avg_betax/avg_alp endif if(evolve_entropy.ne.0) then entropyf = entropyconsp*vxtp endif else if (flux_direction == 2) then call num_x_fluxM(cons_p(1),cons_p(3),cons_p(4),cons_p(2),cons_p(5),& cons_p(7),cons_p(8),cons_p(6),& f1(1),f1(3),f1(4),f1(2),f1(5),f1(7),f1(8),f1(6),& vytp,vztp,vxtp,pressstarp,bylowp,bzlowp,bxlowp,ab0p,wp, & avg_det,avg_alp,avg_beta) if(clean_divergence.ne.0) then f1(6)=f1(6) + 1.0d0*sdet*uxyh*psidcp - cons_p(7)*avg_betax/avg_alp f1(7)=f1(7) + 1.0d0*sdet*uyyh*psidcp - cons_p(7)*avg_betay/avg_alp f1(8)=f1(8) + 1.0d0*sdet*uyzh*psidcp - cons_p(7)*avg_betaz/avg_alp psidcf = cons_p(7)/sdet-psidcp*avg_betay/avg_alp endif if(evolve_entropy.ne.0) then entropyf = entropyconsp*vytp endif else if (flux_direction == 3) then call num_x_fluxM(cons_p(1),cons_p(4),cons_p(2),cons_p(3),cons_p(5),& cons_p(8),cons_p(6),cons_p(7),& f1(1),f1(4),f1(2),f1(3),f1(5),f1(8),f1(6),f1(7), & vztp,vxtp,vytp,pressstarp,bzlowp,bxlowp,bylowp,ab0p,wp, & avg_det,avg_alp,avg_beta) if(clean_divergence.ne.0) then f1(6)=f1(6) + 1.0d0*sdet*uxzh*psidcp - cons_p(8)*avg_betax/avg_alp f1(7)=f1(7) + 1.0d0*sdet*uyzh*psidcp - cons_p(8)*avg_betay/avg_alp f1(8)=f1(8) + 1.0d0*sdet*uzzh*psidcp - cons_p(8)*avg_betaz/avg_alp psidcf = cons_p(8)/sdet-psidcp*avg_betaz/avg_alp endif if(evolve_entropy.ne.0) then entropyf = entropyconsp*vztp endif else call CCTK_ERROR("Flux direction not x,y,z") end if else !!! The end of this branch is right at the bottom of the routine if (flux_direction == 1) then usendh = uxxh else if (flux_direction == 2) then usendh = uyyh else if (flux_direction == 3) then usendh = uzzh else call CCTK_ERROR("Flux direction not x,y,z") end if !!$ Calculate the jumps in the conserved variables qdiff(1) = cons_m(1) - cons_p(1) qdiff(2) = cons_m(2) - cons_p(2) qdiff(3) = cons_m(3) - cons_p(3) qdiff(4) = cons_m(4) - cons_p(4) qdiff(5) = cons_m(5) - cons_p(5) qdiff(6) = cons_m(6) - cons_p(6) qdiff(7) = cons_m(7) - cons_p(7) qdiff(8) = cons_m(8) - cons_p(8) if (clean_divergence.ne.0) then psidcdiff = psidcm - psidcp endif if(evolve_entropy.ne.0) then entropydiff = entropyconsm - entropyconsp endif !!$ Eigenvalues and fluxes either side of the cell interface if (flux_direction == 1) then if(evolve_temper.ne.1) then call eigenvaluesM(GRHydro_eos_handle,& prim_m(1),prim_m(2),prim_m(3),prim_m(4),prim_m(5),prim_m(6),prim_m(7), & prim_m(8),prim_m(9),prim_m(10),& lamminus,gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,& usendh,avg_alp,avg_beta) call eigenvaluesM(GRHydro_eos_handle, & prim_p(1),prim_p(2),prim_p(3),prim_p(4),prim_p(5),prim_p(6),prim_p(7), & prim_p(8),prim_p(9),prim_p(10),& lamplus,gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,& usendh,avg_alp,avg_beta) else xtemp = temperature(i,j,k) call eigenvaluesM_hot(GRHydro_eos_handle,i,j,k,& prim_m(1),prim_m(2),prim_m(3),prim_m(4),prim_m(5),prim_m(6),prim_m(7), & prim_m(8),prim_m(9),prim_m(10),& xtemp,y_e_minus(i+xoffset,j+yoffset,k+zoffset),& lamminus,gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,& usendh,avg_alp,avg_beta) xtemp = temperature(i,j,k) call eigenvaluesM_hot(GRHydro_eos_handle,i,j,k,& prim_p(1),prim_p(2),prim_p(3),prim_p(4),prim_p(5),prim_p(6),prim_p(7), & prim_p(8),prim_p(9),prim_p(10),& xtemp,y_e_plus(i,j,k),& lamplus,gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,& usendh,avg_alp,avg_beta) endif call num_x_fluxM(cons_p(1),cons_p(2),cons_p(3),cons_p(4),cons_p(5),& cons_p(6),cons_p(7),cons_p(8),& fplus(1),fplus(2),fplus(3),fplus(4),fplus(5),fplus(6),fplus(7),fplus(8),& vxtp,vytp,vztp,pressstarp,bxlowp,bylowp,bzlowp,ab0p,wp, & avg_det,avg_alp,avg_beta) call num_x_fluxM(cons_m(1),cons_m(2),cons_m(3),cons_m(4),cons_m(5),& cons_m(6),cons_m(7),cons_m(8),& fminus(1),fminus(2),fminus(3),fminus(4),fminus(5),& fminus(6),fminus(7),fminus(8),& vxtm,vytm,vztm,pressstarm,bxlowm,bylowm,bzlowm,ab0m,wm, & avg_det,avg_alp,avg_beta) if(clean_divergence.ne.0) then fminus(6)=fminus(6) + 1.0d0*sdet*uxxh*psidcm - cons_m(6)*avg_betax/avg_alp fminus(7)=fminus(7) + 1.0d0*sdet*uxyh*psidcm - cons_m(6)*avg_betay/avg_alp fminus(8)=fminus(8) + 1.0d0*sdet*uxzh*psidcm - cons_m(6)*avg_betaz/avg_alp fplus(6)=fplus(6) + 1.0d0*sdet*uxxh*psidcp - cons_p(6)*avg_betax/avg_alp fplus(7)=fplus(7) + 1.0d0*sdet*uxyh*psidcp - cons_p(6)*avg_betay/avg_alp fplus(8)=fplus(8) + 1.0d0*sdet*uxzh*psidcp - cons_p(6)*avg_betaz/avg_alp psidcfp = cons_p(6)/sdet-avg_betax*psidcp/avg_alp psidcfm = cons_m(6)/sdet-avg_betax*psidcm/avg_alp endif if(evolve_entropy.ne.0) then entropyfp = entropyconsp*vxtp entropyfm = entropyconsm*vxtm endif else if (flux_direction == 2) then if(evolve_temper.ne.1) then call eigenvaluesM(GRHydro_eos_handle,& prim_m(1),prim_m(3),prim_m(4),prim_m(2),prim_m(5),prim_m(6),prim_m(7), & prim_m(9),prim_m(10),prim_m(8),& lamminus,gyyh,gyzh,gxyh,gzzh,gxzh,gxxh,& usendh,avg_alp,avg_beta) call eigenvaluesM(GRHydro_eos_handle, & prim_p(1),prim_p(3),prim_p(4),prim_p(2),prim_p(5),prim_p(6),prim_p(7), & prim_p(9),prim_p(10),prim_p(8),& lamplus,gyyh,gyzh,gxyh,gzzh,gxzh,gxxh,& usendh,avg_alp,avg_beta) else xtemp = temperature(i,j,k) call eigenvaluesM_hot(GRHydro_eos_handle,i,j,k,& prim_m(1),prim_m(3),prim_m(4),prim_m(2),prim_m(5),prim_m(6),prim_m(7), & prim_m(9),prim_m(10),prim_m(8),& xtemp,y_e_minus(i+xoffset,j+yoffset,k+zoffset),& lamminus,gyyh,gyzh,gxyh,gzzh,gxzh,gxxh,& usendh,avg_alp,avg_beta) xtemp = temperature(i,j,k) call eigenvaluesM_hot(GRHydro_eos_handle,i,j,k,& prim_p(1),prim_p(3),prim_p(4),prim_p(2),prim_p(5),prim_p(6),prim_p(7), & prim_p(9),prim_p(10),prim_p(8),& xtemp,y_e_plus(i,j,k),& lamplus,gyyh,gyzh,gxyh,gzzh,gxzh,gxxh,& usendh,avg_alp,avg_beta) endif call num_x_fluxM(cons_p(1),cons_p(3),cons_p(4),cons_p(2),cons_p(5),& cons_p(7),cons_p(8),cons_p(6),& fplus(1),fplus(3),fplus(4),fplus(2),fplus(5),fplus(7),fplus(8),fplus(6),& vytp,vztp,vxtp,pressstarp,bylowp,bzlowp,bxlowp,ab0p,wp, & avg_det,avg_alp,avg_beta) call num_x_fluxM(cons_m(1),cons_m(3),cons_m(4),cons_m(2),cons_m(5),& cons_m(7),cons_m(8),cons_m(6),& fminus(1),fminus(3),fminus(4),fminus(2),fminus(5),& fminus(7),fminus(8),fminus(6),& vytm,vztm,vxtm,pressstarm,bylowm,bzlowm,bxlowm,ab0m,wm, & avg_det,avg_alp,avg_beta) if(clean_divergence.ne.0) then fminus(6)=fminus(6) + 1.0d0*sdet*uxyh*psidcm - cons_m(7)*avg_betax/avg_alp fminus(7)=fminus(7) + 1.0d0*sdet*uyyh*psidcm - cons_m(7)*avg_betay/avg_alp fminus(8)=fminus(8) + 1.0d0*sdet*uyzh*psidcm - cons_m(7)*avg_betaz/avg_alp fplus(6)=fplus(6) + 1.0d0*sdet*uxyh*psidcp - cons_p(7)*avg_betax/avg_alp fplus(7)=fplus(7) + 1.0d0*sdet*uyyh*psidcp - cons_p(7)*avg_betay/avg_alp fplus(8)=fplus(8) + 1.0d0*sdet*uyzh*psidcp - cons_p(7)*avg_betaz/avg_alp psidcfp = cons_p(7)/sdet-avg_betay*psidcp/avg_alp psidcfm = cons_m(7)/sdet-avg_betay*psidcm/avg_alp endif if(evolve_entropy.ne.0) then entropyfp = entropyconsp*vytp entropyfm = entropyconsm*vytm endif else if (flux_direction == 3) then if(evolve_temper.ne.1) then call eigenvaluesM(GRHydro_eos_handle,& prim_m(1),prim_m(4),prim_m(2),prim_m(3),prim_m(5),prim_m(6),prim_m(7), & prim_m(10),prim_m(8),prim_m(9),& lamminus,gzzh,gxzh,gyzh,gxxh,gxyh,gyyh,& usendh,avg_alp,avg_beta) call eigenvaluesM(GRHydro_eos_handle, & prim_p(1),prim_p(4),prim_p(2),prim_p(3),prim_p(5),prim_p(6),prim_p(7), & prim_p(10),prim_p(8),prim_p(9),& lamplus,gzzh,gxzh,gyzh,gxxh,gxyh,gyyh,& usendh,avg_alp,avg_beta) else xtemp = temperature(i,j,k) call eigenvaluesM_hot(GRHydro_eos_handle,i,j,k,& prim_m(1),prim_m(4),prim_m(2),prim_m(3),prim_m(5),prim_m(6),prim_m(7), & prim_m(10),prim_m(8),prim_m(9),& xtemp,y_e_minus(i+xoffset,j+yoffset,k+zoffset),& lamminus,gzzh,gxzh,gyzh,gxxh,gxyh,gyyh,& usendh,avg_alp,avg_beta) xtemp = temperature(i,j,k) call eigenvaluesM_hot(GRHydro_eos_handle,i,j,k,& prim_p(1),prim_p(4),prim_p(2),prim_p(3),prim_p(5),prim_p(6),prim_p(7), & prim_p(10),prim_p(8),prim_p(9),& xtemp,y_e_plus(i,j,k),& lamplus,gzzh,gxzh,gyzh,gxxh,gxyh,gyyh,& usendh,avg_alp,avg_beta) endif call num_x_fluxM(cons_p(1),cons_p(4),cons_p(2),cons_p(3),cons_p(5),& cons_p(8),cons_p(6),cons_p(7),& fplus(1),fplus(4),fplus(2),fplus(3),fplus(5),fplus(8),fplus(6),fplus(7), & vztp,vxtp,vytp,pressstarp,bzlowp,bxlowp,bylowp,ab0p,wp, & avg_det,avg_alp,avg_beta) call num_x_fluxM(cons_m(1),cons_m(4),cons_m(2),cons_m(3),cons_m(5),& cons_m(8),cons_m(6),cons_m(7),& fminus(1),fminus(4),fminus(2),fminus(3),fminus(5), & fminus(8),fminus(6),fminus(7), & vztm,vxtm,vytm,pressstarm,bzlowm,bxlowm,bylowm,ab0m,wm, & avg_det,avg_alp,avg_beta) if(clean_divergence.ne.0) then fminus(6)=fminus(6) + 1.0d0*sdet*uxzh*psidcm - cons_m(8)*avg_betax/avg_alp fminus(7)=fminus(7) + 1.0d0*sdet*uyzh*psidcm - cons_m(8)*avg_betay/avg_alp fminus(8)=fminus(8) + 1.0d0*sdet*uzzh*psidcm - cons_m(8)*avg_betaz/avg_alp fplus(6)=fplus(6) + 1.0d0*sdet*uxzh*psidcp - cons_p(8)*avg_betax/avg_alp fplus(7)=fplus(7) + 1.0d0*sdet*uyzh*psidcp - cons_p(8)*avg_betay/avg_alp fplus(8)=fplus(8) + 1.0d0*sdet*uzzh*psidcp - cons_p(8)*avg_betaz/avg_alp psidcfp = cons_p(8)/sdet-avg_betaz*psidcp/avg_alp psidcfm = cons_m(8)/sdet-avg_betaz*psidcm/avg_alp endif if(evolve_entropy.ne.0) then entropyfp = entropyconsp*vztp entropyfm = entropyconsm*vztm endif else call CCTK_ERROR("Flux direction not x,y,z") end if !!$ Find minimum and maximum wavespeeds charmin = min(0.d0, lamplus(1), lamplus(2), lamplus(3), & lamplus(4),lamplus(5), lamminus(1),lamminus(2),lamminus(3),& lamminus(4),lamminus(5)) charmax = max(0.d0, lamplus(1), lamplus(2), lamplus(3), & lamplus(4),lamplus(5), lamminus(1),lamminus(2),lamminus(3),& lamminus(4),lamminus(5)) chartop = max(-charmin,charmax) charpm = charmax - charmin !!$ Calculate flux by standard formula do m = 1,8 qdiff(m) = cons_m(m) - cons_p(m) if (HLLE) then f1(m) = (charmax * fplus(m) - charmin * fminus(m) + & charmax * charmin * qdiff(m)) / charpm else if (LLF) then f1(m) = 0.5d0 * (fplus(m) + fminus(m) - chartop * qdiff(m)) end if end do if(clean_divergence.ne.0) then psidcdiff = psidcm - psidcp select case(whichpsidcspeed) case(0) if (HLLE) then psidcf = (charmax * psidcfp - charmin * psidcfm + & charmax * charmin * psidcdiff) / charpm else if (LLF) then psidcf = 0.5d0 * (psidcfp + psidcfm - chartop * psidcdiff) end if case(1) !!$ Wavespeeds for psidc are +/-c, not Fast Magnetosonic? !!$ psidcf = 0.5d0 * (1.d0 * psidcfp - (-1.d0) * psidcfm + & !!$ 1.d0 * (-1.d0) * psidcdiff) !!$ The fastest speed for psidc comes from the condition !!$ that the normal vector to the characteristic hypersurface !!$ be spacelike (Eq. 60 of Anton et al.) charmax_dc = sqrt(usendh) - avg_beta/avg_alp charmin_dc = -1.d0*sqrt(usendh) - avg_beta/avg_alp charpm_dc = charmax_dc - charmin_dc psidcf = (charmax_dc * psidcfp - charmin_dc * psidcfm + & charmax_dc * charmin_dc * psidcdiff) / charpm_dc if(decouple_normal_Bfield .ne. 0) then ! same expression for HLLE and LLF !!$ B^i field decouples from the others and has same propagation !!$ speed as divergence -null direction, !!$ \pm sqrt(g^{xx}} - beta^x/alpha f1(5+flux_direction) = (charmax_dc * fplus(5+flux_direction) & - charmin_dc * fminus(5+flux_direction) + & charmax_dc * charmin_dc * qdiff(5+flux_direction)) / charpm_dc end if case(2) charmax = setcharmax charmin = setcharmin if (HLLE) then psidcf = (charmax * psidcfp - charmin * psidcfm + & charmax * charmin * psidcdiff) / charpm else if (LLF) then chartop = max(-charmin,charmax) psidcf = 0.5d0 * (psidcfp + psidcfm - chartop * psidcdiff) end if end select endif if(evolve_entropy.ne.0) then entropydiff = entropyconsm - entropyconsp if (HLLE) then entropyf = (charmax * entropyfp - charmin * entropyfm + & charmax * charmin * entropydiff) / charpm else if (LLF) then entropyf = 0.5d0 * (entropyfp + entropyfm - chartop * entropydiff) end if endif end if !!! The end of the SpaceMask check for a trivial RP. densflux(i, j, k) = f1(1) sxflux(i, j, k) = f1(2) syflux(i, j, k) = f1(3) szflux(i, j, k) = f1(4) tauflux(i, j, k) = f1(5) Bconsxflux(i, j, k) = f1(6) Bconsyflux(i, j, k) = f1(7) Bconszflux(i, j, k) = f1(8) if(clean_divergence.ne.0) then psidcflux(i,j,k) = psidcf endif if(evolve_entropy.ne.0) then entropyflux(i,j,k) = entropyf endif if(evolve_Y_e.ne.0) then if (densflux(i, j, k) > 0.d0) then Y_e_con_flux(i, j, k) = & Y_e_plus(i, j, k) * & densflux(i, j, k) else Y_e_con_flux(i, j, k) = & Y_e_minus(i + xoffset, j + yoffset, k + zoffset) * & densflux(i, j, k) endif endif end do end do end do !$OMP END PARALLEL DO #undef faulty_gxx #undef faulty_gxy #undef faulty_gxz #undef faulty_gyy #undef faulty_gyz #undef faulty_gzz #undef faulty_betax #undef faulty_betay #undef faulty_betaz #undef faulty_vel #undef faulty_Bvec end subroutine GRHydro_HLLEM /*@@ @routine GRHydro_HLLE_TracerM @date Aug 30, 2010 @author Joshua Faber, Scott Noble, Bruno Mundim, Ian Hawke @desc HLLE just for the tracer. @enddesc @calls @calledby @history @endhistory @@*/ subroutine GRHydro_HLLE_TracerM(CCTK_ARGUMENTS) USE GRHydro_EigenproblemM implicit none ! save memory when MP is not used ! TARGET as to be before DECLARE_CCTK_ARGUMENTS for gcc 4.1 TARGET gaa, gab, gac, gbb, gbc, gcc TARGET gxx, gxy, gxz, gyy, gyz, gzz TARGET betaa, betab, betac TARGET betax, betay, betaz DECLARE_CCTK_ARGUMENTS DECLARE_CCTK_PARAMETERS integer :: i, j, k, m CCTK_REAL, dimension(number_of_tracers) :: cons_p,cons_m,fplus,fminus,f1 CCTK_REAL, dimension(5) :: lamminus,lamplus CCTK_REAL, dimension(number_of_tracers) :: qdiff CCTK_REAL, dimension(7) :: prim_p, prim_m CCTK_REAL, dimension(3) :: mag_p, mag_m CCTK_REAL :: charmin, charmax, charpm,avg_alp,avg_det CCTK_REAL :: gxxh, gxyh, gxzh, gyyh, gyzh, gzzh, uxxh, uxyh, & uxzh, uyyh, uyzh, uzzh, avg_beta, usendh CCTK_REAL :: b2p,b2m,vA2m,vA2p CCTK_INT :: type_bits, trivial ! save memory when MP is not used CCTK_INT :: GRHydro_UseGeneralCoordinates CCTK_REAL, DIMENSION(:,:,:), POINTER :: g11, g12, g13, g22, g23, g33 CCTK_REAL, DIMENSION(:,:,:), POINTER :: beta1, beta2, beta3 if (GRHydro_UseGeneralCoordinates(cctkGH).ne.0) then g11 => gaa g12 => gab g13 => gac g22 => gbb g23 => gbc g33 => gcc beta1 => betaa beta2 => betab beta3 => betac else g11 => gxx g12 => gxy g13 => gxz g22 => gyy g23 => gyz g33 => gzz beta1 => betax beta2 => betay beta3 => betaz end if #define gxx faulty_gxx #define gxy faulty_gxy #define gxz faulty_gxz #define gyy faulty_gyy #define gyz faulty_gyz #define gzz faulty_gzz #define betax faulty_betax #define betay faulty_betay #define betaz faulty_betaz #define vel faulty_vel #define Bvec faulty_Bvec if (flux_direction == 1) then call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemX") call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemX", & &"trivial") else if (flux_direction == 2) then call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemY") call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemY", & &"trivial") else if (flux_direction == 3) then call SpaceMask_GetTypeBits(type_bits, "Hydro_RiemannProblemZ") call SpaceMask_GetStateBits(trivial, "Hydro_RiemannProblemZ", & &"trivial") else call CCTK_ERROR("Flux direction not x,y,z") end if do k = GRHydro_stencil, cctk_lsh(3) - GRHydro_stencil do j = GRHydro_stencil, cctk_lsh(2) - GRHydro_stencil do i = GRHydro_stencil, cctk_lsh(1) - GRHydro_stencil f1 = 0.d0 lamminus = 0.d0 lamplus = 0.d0 cons_p = 0.d0 cons_m = 0.d0 mag_p = 0.d0 mag_m = 0.d0 fplus = 0.d0 fminus = 0.d0 qdiff = 0.d0 !!$ Set the left (p for plus) and right (m_i for minus, i+1) states cons_p(:) = cons_tracerplus(i,j,k,:) cons_m(:) = cons_tracerminus(i+xoffset,j+yoffset,k+zoffset,:) mag_p(1) = Bvecxplus(i,j,k) mag_p(2) = Bvecyplus(i,j,k) mag_p(3) = Bveczplus(i,j,k) mag_m(1) = Bvecxminus(i+xoffset,j+yoffset,k+zoffset) mag_m(2) = Bvecyminus(i+xoffset,j+yoffset,k+zoffset) mag_m(3) = Bveczminus(i+xoffset,j+yoffset,k+zoffset) prim_p(1) = rhoplus(i,j,k) prim_p(2) = velxplus(i,j,k) prim_p(3) = velyplus(i,j,k) prim_p(4) = velzplus(i,j,k) prim_p(5) = epsplus(i,j,k) prim_p(6) = pressplus(i,j,k) prim_p(7) = w_lorentzplus(i,j,k) prim_m(1) = rhominus(i+xoffset,j+yoffset,k+zoffset) prim_m(2) = velxminus(i+xoffset,j+yoffset,k+zoffset) prim_m(3) = velyminus(i+xoffset,j+yoffset,k+zoffset) prim_m(4) = velzminus(i+xoffset,j+yoffset,k+zoffset) prim_m(5) = epsminus(i+xoffset,j+yoffset,k+zoffset) prim_m(6) = pressminus(i+xoffset,j+yoffset,k+zoffset) prim_m(7) = w_lorentzminus(i+xoffset,j+yoffset,k+zoffset) !!$ Calculate various metric terms here. !!$ Note also need the average of the lapse at the !!$ left and right points. if (flux_direction == 1) then avg_beta = 0.5d0 * (beta1(i+xoffset,j+yoffset,k+zoffset) + & beta1(i,j,k)) else if (flux_direction == 2) then avg_beta = 0.5d0 * (beta2(i+xoffset,j+yoffset,k+zoffset) + & beta2(i,j,k)) else if (flux_direction == 3) then avg_beta = 0.5d0 * (beta3(i+xoffset,j+yoffset,k+zoffset) + & beta3(i,j,k)) else call CCTK_ERROR("Flux direction not x,y,z") end if avg_alp = 0.5 * (alp(i,j,k) + alp(i+xoffset,j+yoffset,k+zoffset)) gxxh = 0.5d0 * (g11(i+xoffset,j+yoffset,k+zoffset) + g11(i,j,k)) gxyh = 0.5d0 * (g12(i+xoffset,j+yoffset,k+zoffset) + g12(i,j,k)) gxzh = 0.5d0 * (g13(i+xoffset,j+yoffset,k+zoffset) + g13(i,j,k)) gyyh = 0.5d0 * (g22(i+xoffset,j+yoffset,k+zoffset) + g22(i,j,k)) gyzh = 0.5d0 * (g23(i+xoffset,j+yoffset,k+zoffset) + g23(i,j,k)) gzzh = 0.5d0 * (g33(i+xoffset,j+yoffset,k+zoffset) + g33(i,j,k)) avg_det = SPATIAL_DETERMINANT(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh) call UpperMetric(uxxh, uxyh, uxzh, uyyh, uyzh, uzzh, & avg_det,gxxh, gxyh, gxzh, & gyyh, gyzh, gzzh) if (flux_direction == 1) then usendh = uxxh else if (flux_direction == 2) then usendh = uyyh else if (flux_direction == 3) then usendh = uzzh else call CCTK_ERROR("Flux direction not x,y,z") end if !!$ b^2 = (1-v^2)B^2+(B dot v)^2 b2p=DOTP2(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,mag_p(1),mag_p(2),mag_p(3))/prim_p(7)**2 + & (DOTP(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,prim_p(2),prim_p(3),prim_p(4),mag_p(1),mag_p(2),mag_p(3)))**2 b2m=DOTP2(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,mag_m(1),mag_m(2),mag_m(3))/prim_m(7)**2 + & (DOTP(gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,prim_m(2),prim_m(3),prim_m(4),mag_m(1),mag_m(2),mag_m(3)))**2 vA2p = b2p/(prim_p(1)*(1.0d0+prim_p(5))+prim_p(6)+b2p) vA2m = b2m/(prim_m(1)*(1.0d0+prim_m(5))+prim_m(6)+b2m) !!$ Calculate the jumps in the conserved variables qdiff = cons_m - cons_p !!$ Eigenvalues and fluxes either side of the cell interface if (flux_direction == 1) then call eigenvaluesM(GRHydro_eos_handle,& prim_m(1),prim_m(2),prim_m(3),prim_m(4),prim_m(5),prim_m(6),prim_m(7), & mag_m(1),mag_m(2),mag_m(3),& lamminus,gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,& usendh,avg_alp,avg_beta) call eigenvaluesM(GRHydro_eos_handle, & prim_p(1),prim_p(2),prim_p(3),prim_p(4),prim_p(5),prim_p(6),prim_p(7), & mag_p(1),mag_p(2),mag_p(3),& lamplus,gxxh,gxyh,gxzh,gyyh,gyzh,gzzh,& usendh,avg_alp,avg_beta) fplus(:) = (velxplus(i,j,k) - avg_beta / avg_alp) * & cons_tracerplus(i,j,k,:) fminus(:) = (velxminus(i+xoffset,j+yoffset,k+zoffset) - avg_beta / avg_alp) * & cons_tracerminus(i+xoffset,j+yoffset,k+zoffset,:) else if (flux_direction == 2) then call eigenvaluesM(GRHydro_eos_handle,& prim_m(1),prim_m(3),prim_m(4),prim_m(2),prim_m(5),prim_m(6),prim_m(7), & mag_m(2),mag_m(3),mag_m(1),& lamminus,gyyh,gyzh,gxyh,gzzh,gxzh,gxxh,& usendh,avg_alp,avg_beta) call eigenvaluesM(GRHydro_eos_handle, & prim_p(1),prim_p(3),prim_p(4),prim_p(2),prim_p(5),prim_p(6),prim_p(7), & mag_p(2),mag_p(3),mag_p(1),& lamplus,gyyh,gyzh,gxyh,gzzh,gxzh,gxxh,& usendh,avg_alp,avg_beta) fplus(:) = (velyplus(i,j,k) - avg_beta / avg_alp) * & cons_tracerplus(i,j,k,:) fminus(:) = (velyminus(i+xoffset,j+yoffset,k+zoffset) - avg_beta / avg_alp) * & cons_tracerminus(i+xoffset,j+yoffset,k+zoffset,:) else if (flux_direction == 3) then call eigenvaluesM(GRHydro_eos_handle,& prim_m(1),prim_m(4),prim_m(2),prim_m(3),prim_m(5),prim_m(6),prim_m(7), & mag_m(3),mag_m(1),mag_m(2),& lamminus,gzzh,gxzh,gyzh,gxxh,gxyh,gyyh,& usendh,avg_alp,avg_beta) call eigenvaluesM(GRHydro_eos_handle,& prim_p(1),prim_p(4),prim_p(2),prim_p(3),prim_p(5),prim_p(6),prim_p(7), & mag_p(3),mag_p(1),mag_p(2),& lamplus,gzzh,gxzh,gyzh,gxxh,gxyh,gyyh,& usendh,avg_alp,avg_beta) fplus(:) = (velzplus(i,j,k) - avg_beta / avg_alp) * & cons_tracerplus(i,j,k,:) fminus(:) = (velzminus(i+xoffset,j+yoffset,k+zoffset) - avg_beta / avg_alp) * & cons_tracerminus(i+xoffset,j+yoffset,k+zoffset,:) else call CCTK_ERROR("Flux direction not x,y,z") end if !!$ Find minimum and maximum wavespeeds charmin = min(0.d0, lamplus(1), lamplus(2), lamplus(3), & lamplus(4),lamplus(5), lamminus(1),lamminus(2),lamminus(3),& lamminus(4),lamminus(5)) charmax = max(0.d0, lamplus(1), lamplus(2), lamplus(3), & lamplus(4),lamplus(5), lamminus(1),lamminus(2),lamminus(3),& lamminus(4),lamminus(5)) charpm = charmax - charmin !!$ Calculate flux by standard formula do m = 1,number_of_tracers qdiff(m) = cons_m(m) - cons_p(m) f1(m) = (charmax * fplus(m) - charmin * fminus(m) + & charmax * charmin * qdiff(m)) / charpm end do cons_tracerflux(i, j, k,:) = f1(:) !!$ !!$ if ( ((flux_direction.eq.3).and.(i.eq.4).and.(j.eq.4)).or.& !!$ ((flux_direction.eq.2).and.(i.eq.4).and.(k.eq.4)).or.& !!$ ((flux_direction.eq.1).and.(j.eq.4).and.(k.eq.4))& !!$ ) then !!$ write(*,*) flux_direction, i, j, k, f1(1), cons_m(1), cons_p(1) !!$ end if end do end do end do #undef faulty_gxx #undef faulty_gxy #undef faulty_gxz #undef faulty_gyy #undef faulty_gyz #undef faulty_gzz #undef faulty_betax #undef faulty_betay #undef faulty_betaz #undef faulty_vel #undef faulty_Bvec end subroutine GRHydro_HLLE_TracerM