\documentclass{article} \begin{document} \title{EOS\_Polytrope} \author{Ian Hawke} \date{22/4/2002} \maketitle \abstract{EOS\_Polytrope} \section{The equations} \label{sec:eqn} This equation provides a polytropic equation of state to thorns using the CactusEOS interface found in EOS\_Base. As such it's a fake, as EOS\_Base assumes that, e.g., the pressure is a function of both density and specific internal energy. Here the pressure is just a function of the density, and is set appropriately (the specific internal energy is always ignored). The two fluid constants are $K$ ({\tt eos\_k}) and $\Gamma$ ({\tt eos\_gamma}), which default to 100 and 2 respectively. The formulas that are applied under the appropriate EOS\_Base function calls are \begin{eqnarray} \label{eq:eosformulas} P & = & K \rho^{\Gamma} \\ \epsilon & = & \frac{K \rho^{\Gamma-1}}{\Gamma - 1} \\ \rho & = & \frac{P}{(\Gamma - 1) \epsilon} \\ \frac{\partial P}{\partial \rho} & = & K \Gamma \rho^{\Gamma-1} \\ \frac{\partial P}{\partial \epsilon} & = & 0. \end{eqnarray} To calculate the units of the Cactus quantities and back, remember that $G=c=M_{\odot}=1$ in Cactus.\\ Here is one example how to calculate densities: \begin{equation} \rho_{\mbox{\tiny Cactus}}=\frac{G^3M_{\odot}^2}{c^6}\cdot \rho \approx1.6167\cdot10^{-21}\frac{\mbox{m}^3}{\mbox{kg}}\cdot\rho= 1.6167\cdot10^{-18}\frac{\mbox{cm}^3}{\mbox{g}}\cdot\rho \end{equation} and one example for calculating $K$ (for $\Gamma=2$): \begin{equation} K_{\mbox{\tiny Cactus}}=\frac{c^4}{G^3M_{\odot}^2}\cdot K \approx6.8824\cdot10^{-11}\frac{\mbox{m}^5}{\mbox{kg}\cdot\mbox{s}^2}\cdot K= 6.8824\cdot10^{-4}\frac{\mbox{cm}^5}{\mbox{g}\cdot\mbox{s}^2}\cdot K \end{equation} \include{interface} \include{param} \include{schedule} \end{document}