From b69d9afcef5d9067170fdb4d154db2b50427db19 Mon Sep 17 00:00:00 2001 From: cott Date: Wed, 20 Apr 2011 00:12:05 +0000 Subject: * describe hybrid EOS git-svn-id: http://svn.einsteintoolkit.org/cactus/EinsteinEOS/EOS_Omni/trunk@43 8e189c6b-2ab8-4400-aa02-70a9cfce18b9 --- doc/documentation.tex | 60 ++++++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 57 insertions(+), 3 deletions(-) diff --git a/doc/documentation.tex b/doc/documentation.tex index 490fe55..dac136c 100644 --- a/doc/documentation.tex +++ b/doc/documentation.tex @@ -76,6 +76,18 @@ % homepage at www.cactuscode.org) \usepackage{../../../../doc/latex/cactus} +\newenvironment{equationarray} +{\arraycolsep 0.14 em +\begin{eqnarray}} +{\end{eqnarray}} + +\newenvironment{equationarray*} +{\arraycolsep 0.14 em +\begin{eqnarray*}} +{\end{eqnarray*}} + + + \begin{document} % The author of the documentation @@ -290,7 +302,45 @@ EOS and the parameters \texttt{poly\_gamma\_ini} and \subsection{Hybrid} -\textbf{TODO: Not yet documented.} +The hybrid EOS was introduced by \cite{janka:93} for use in simplified +simulations of stellar collapse to mimic (1) the stiffening of the +nuclear EOS at nuclear density and (2) to include thermal pressure in +the postbounce phase. It consists of two polytropes characterized by +($K_1$, $\gamma_1$) and ($K_2$, $\gamma_2$) and a thermal $\gamma-$law +component described by $\gamma_\mathrm{th}$. Polytrope 1 is soft and +describes a gas of relativistic degenerate electrons with $\gamma_1 +\approx 4/3$. It is used below nuclear density ($\rho_\mathrm{nuc} +\approx 2\times10^{14}\,\mathrm{g\,cm}^{-3}$) and smoothly matched to +polytrope 2 which applies above $\rho_\mathrm{nuc}$, is stiff, and +models the repulsive core of the strong force above nuclear density +($\gamma_2 \gtrsim 2.5$). $K_2$ is completely determined by +$P_1(\rho_\mathrm{nuc}) = P_2(\rho_\mathrm{nuc})$ and $K_1, \gamma_1,$ +and $\gamma_2$. The full functional form of the EOS +$P=P(\rho,\epsilon)$ with the thermal component (which takes into +account shock heating) is given by +\begin{equationarray} + P & = & \frac{\gamma - \gamma_{\rm th}}{\gamma - 1} + K \rho_{\rm nuc}^{\gamma_1 - \gamma} + \rho^{\gamma} - \frac{(\gamma_{\rm th} - 1) (\gamma - \gamma_1)} + {(\gamma_1 - 1) (\gamma_2 - 1)} + K \rho_{\rm nuc}^{\gamma_1 - 1} \rho + + (\gamma_{\rm th} - 1) \rho \epsilon\,. + \label{eq:hybrid_eos} +\end{equationarray}% + +The \texttt{EOS\_Omni} parameters for the hybrid EOS are the following: + +\begin{tabular}{ll} +\texttt{hybrid\_gamma1} & $\gamma_1$, $\gamma_1 = 1.325$ is an appropriate choice.\\ +\texttt{hybrid\_gamma2} & $\gamma_2$, $\gamma_2 = 2.5$ is an appropriate choice.\\ +\texttt{hybrid\_gamma\_th} & $\gamma_\mathrm{th}$, perhaps $1.5$.\\ +\texttt{hybrid\_k1} & $K_1$, $0.4640517$ in solar units for relativistic degenerate e$^{-}$.\\ +\texttt{hybrid\_rho\_nuc} & nuclear density, standard is $3.238607\times 10^{-4}$ in solar units. +\end{tabular} + + + + \subsection{Finite-Temperature Nuclear} @@ -363,9 +413,13 @@ this conversion. -%\begin{thebibliography}{9} +\begin{thebibliography}{9} +\bibitem{janka:93} Janka, H.-T., Zwerger, T., \& Moenchmeyer, R.\ 1993, Astron. Astrophys., 268, 360 + + + -%\end{thebibliography} +\end{thebibliography} % Do not delete next line % END CACTUS THORNGUIDE -- cgit v1.2.3