From ebf15d4937e96a7412716f09e12739f1b57f7a77 Mon Sep 17 00:00:00 2001 From: diener Date: Tue, 3 Jun 2003 11:45:49 +0000 Subject: A different way of calculating the rhs of the generator tracking. Here everything is calcluated at the grid points and then interpolated to the position of the generators. git-svn-id: http://svn.einsteintoolkit.org/cactus/EinsteinAnalysis/EHFinder/trunk@115 2a26948c-0e4f-0410-aee8-f1d3e353619c --- src/EHFinder_Generator_Sources2.F90 | 206 ++++++++++++++++++++++++++++++++++++ 1 file changed, 206 insertions(+) create mode 100644 src/EHFinder_Generator_Sources2.F90 diff --git a/src/EHFinder_Generator_Sources2.F90 b/src/EHFinder_Generator_Sources2.F90 new file mode 100644 index 0000000..aab47e1 --- /dev/null +++ b/src/EHFinder_Generator_Sources2.F90 @@ -0,0 +1,206 @@ +! Calculation of the sources for the level set function. +! $Header$ + +#include "cctk.h" +#include "cctk_Parameters.h" +#include "cctk_Arguments.h" + +subroutine EHFinder_Generator_Sources2(CCTK_ARGUMENTS) + + use EHFinder_mod + + implicit none + + DECLARE_CCTK_PARAMETERS + DECLARE_CCTK_ARGUMENTS + DECLARE_CCTK_FUNCTIONS + + CCTK_INT :: i, j, k + CCTK_INT :: interp_handle, table_handle, status, coord_system_handle + + character(len=200) :: gen_interp + CCTK_INT :: gen_interp_len + character(len=7) :: gen_order + + CCTK_INT, dimension(1) :: lsh + CCTK_POINTER, dimension(3) :: interp_coords + CCTK_POINTER, dimension(3) :: out_arrays + CCTK_INT, dimension(3) :: in_arrays + CCTK_INT, dimension(3), parameter :: op_indices = (/ 0, 1, 2 /), & + op_codes = (/ 0, 0, 0 /) + CCTK_INT, dimension(3) :: out_types + CCTK_REAL :: alp2, psi4, dfux, dfuy, dfuz, factor + CCTK_REAL :: idetg, guxx, guxy, guxz, guyy, guyz, guzz + + out_types = CCTK_VARIABLE_REAL + + ! Convert the generator_interpolator string parameter to a Fortran string. + call CCTK_FortranString ( gen_interp_len, generator_interpolator, & + gen_interp ) + + ! Get the corresponding interpolator handle. + call CCTK_InterpHandle ( interp_handle, gen_interp ) + + if ( interp_handle .lt. 0 ) then + call CCTK_WARN( 0, "Cannot get handle for interpolation. Forgot to activate an implementation providing interpolation operators??" ) + end if + + ! Convert the interpolation order parameter to a Fortran string to be placed + ! in the interpolator table. Note that the order is assumed to contain only + ! 1 digit. + write(gen_order,'(a6,i1)') 'order=',generator_interpolation_order + + ! Create the table directly from the string. + call Util_TableCreateFromString ( table_handle, gen_order ) + if ( table_handle .lt. 0 ) then + call CCTK_WARN( 0, "Cannot create parameter table for interpolator" ) + end if + + ! Get the 3D coordinate system handle. + call CCTK_CoordSystemHandle ( coord_system_handle, "cart3d" ) + if ( coord_system_handle .lt. 0) then + call CCTK_WARN( 0, "Cannot get handle for cart3d coordinate system. Forgot to activate an implementation providing coordinates ??" ) + endif + +#include "include/physical_part.h" + + ! Find out how many interpolation points are located on this processor. + call CCTK_GrouplshGN ( status, cctkGH, 1, lsh, "ehfinder::generators" ) + if ( status .lt. 0 ) then + call CCTK_WARN ( 0, "cannot get local size for surface arrays" ) + end if + + ! Set the pointers to the points to be interpolated to. + interp_coords(1) = CCTK_PointerTo(xg) + interp_coords(2) = CCTK_PointerTo(yg) + interp_coords(3) = CCTK_PointerTo(zg) + + ! Set the pointers to the output arrays. + out_arrays(1) = CCTK_PointerTo(dxg) + out_arrays(2) = CCTK_PointerTo(dyg) + out_arrays(3) = CCTK_PointerTo(dzg) + + ! Set the indices to the input grid functions. + call CCTK_VarIndex ( in_arrays(1), "ehfinder::xgf" ) + call CCTK_VarIndex ( in_arrays(2), "ehfinder::ygf" ) + call CCTK_VarIndex ( in_arrays(3), "ehfinder::zgf" ) + + ! Set the operand indices table entry, corresponding + ! to interpolation of ehfinder::generator_gf (3) + call Util_TableSetIntArray ( status, table_handle, 3, & + op_indices, "operand_indices" ) + if ( status .lt. 0 ) then + call CCTK_WARN ( 0, "Cannot set operand indices array in parameter table" ) + endif + + ! Set the corresponding table entry for the operation codes. + call Util_TableSetIntArray ( status, table_handle, 3, & + op_codes, "operation_codes" ) + if ( status .lt. 0 ) then + call CCTK_WARN ( 0, "Cannot set operation codes array in parameter table" ) + endif + + ! Check the metric type. At present physical and static_conformal are + ! supported. + if ( CCTK_EQUALS ( metric_type, 'physical' ) ) then + + do k = kzl, kzr + do j = jyl, jyr + do i = ixl, ixr + if ( eh_mask(i,j,k) .ge. 0 ) then + + ! calculate the square of the lapse. + alp2 = alp(i,j,k)**2 + + ! Calculate the inverse of the 3-metric. + guxx = gyy(i,j,k) * gzz(i,j,k) - gyz(i,j,k)**2 + guxy = gxz(i,j,k) * gyz(i,j,k) - gxy(i,j,k) * gzz(i,j,k) + guxz = gxy(i,j,k) * gyz(i,j,k) - gxz(i,j,k) * gyy(i,j,k) + + idetg = one / ( gxx(i,j,k) * guxx + & + gxy(i,j,k) * guxy + & + gxz(i,j,k) * guxz ) + + guxx = idetg * guxx + guxy = idetg * guxy + guxz = idetg * guxz + + guyy = ( gxx(i,j,k) * gzz(i,j,k) - gxz(i,j,k)**2 ) * idetg + guyz = ( gxy(i,j,k) * gxz(i,j,k) - gxx(i,j,k) * gyz(i,j,k) ) * idetg + guzz = ( gxx(i,j,k) * gyy(i,j,k) - gxy(i,j,k)**2 ) * idetg + + ! Raise the index of the partial derivatives of f. + dfux = guxx * dfx(i,j,k) + guxy * dfy(i,j,k) + guxz * dfz(i,j,k) + dfuy = guxy * dfx(i,j,k) + guyy * dfy(i,j,k) + guyz * dfz(i,j,k) + dfuz = guxz * dfx(i,j,k) + guyz * dfy(i,j,k) + guzz * dfz(i,j,k) + + ! Calculate the overall multiplication factor. + factor = alp2 / sqrt ( alp2 * ( dfux * dfx(i,j,k) + & + dfuy * dfy(i,j,k) + & + dfuz * dfz(i,j,k) ) ) + + ! Finally obtain dx^i/dt. + xgf(i,j,k) = - betax(i,j,k) + factor * dfux + ygf(i,j,k) = - betay(i,j,k) + factor * dfuy + zgf(i,j,k) = - betaz(i,j,k) + factor * dfuz + else + xgf(i,j,k) = zero + ygf(i,j,k) = zero + zgf(i,j,k) = zero + end if + end do + end do + end do + + else if ( CCTK_EQUALS ( metric_type, 'static conformal' ) ) then + + do i = 1, lsh(1) + alp2 = alpg(i)**2 + +! The inverse of psi^4 + psi4 = one / psig(i)**4 + + guxx = gyyg(i) * gzzg(i) - gyzg(i)**2 + guxy = gxzg(i) * gyzg(i) - gxyg(i) * gzzg(i) + guxz = gxyg(i) * gyzg(i) - gxzg(i) * gyyg(i) + +! The determinant divided by psi^4. + idetg = psi4 / ( gxxg(i) * guxx + & + gxyg(i) * guxy + & + gxzg(i) * guxz ) + +! The inverse metric. Since the determinant is already divided +! by psi^4, this gives the inverse of the physical metric. + guxx = idetg * guxx + guxy = idetg * guxy + guxz = idetg * guxz + + guyy = ( gxxg(i) * gzzg(i) - gxzg(i)**2 ) * idetg + guyz = ( gxyg(i) * gxzg(i) - gxxg(i) * gyzg(i) ) * idetg + guzz = ( gxxg(i) * gyyg(i) - gxyg(i)**2 ) * idetg + + dfux = guxx * dfxg(i) + guxy * dfyg(i) + guxz * dfzg(i) + dfuy = guxy * dfxg(i) + guyy * dfyg(i) + guyz * dfzg(i) + dfuz = guxz * dfxg(i) + guyz * dfyg(i) + guzz * dfzg(i) + factor = alp2 / sqrt ( alp2 * ( dfux * dfxg(i) + & + dfuy * dfyg(i) + & + dfuz * dfzg(i) ) ) + dxg(i) = - betaxg(i) + factor * dfux + dyg(i) = - betayg(i) + factor * dfuy + dzg(i) = - betazg(i) + factor * dfuz + end do + end if + + ! Call the interpolator. + call CCTK_InterpGridArrays ( status, cctkGH, 3, interp_handle, & + table_handle, coord_system_handle, & + lsh(1), CCTK_VARIABLE_REAL, & + interp_coords, 3, in_arrays, & + 3, out_types, out_arrays ) + + if ( status .lt. 0 ) then + call CCTK_INFO ( 'Interpolation failed.' ) + end if + + return +end subroutine EHFinder_Generator_Sources2 -- cgit v1.2.3