/*@@ @file Symmetry.c @date Mon Mar 15 15:09:00 1999 @author Gerd Lanfermann @desc This file contains the routines for registering and applying symmetry boundary conditions @enddesc @@*/ #include #include #include "cctk.h" #include "cctk_parameters.h" #include "flesh.h" #include "Symmetry.h" #include "GHExtensions.h" #include "Groups.h" #include "WarnLevel.h" #include "Misc.h" #include "FortranString.h" /*#define DEBUG_BOUND*/ /*@@ @routine SetCartSymmetry @date Mon Mar 15 15:10:58 1999 @author Gerd Lanfermann @desc This routine sets the GH extension (EinsteinBoundGHex *bGHex), which describes the symmetry boundary type of each GF. Takes the name of the GF ("implementation::gfname") and the symmetry operators sx,sy,sz and inserts them in the array bGHex. These values will looked up by ApplySym @enddesc @calls @calledby @history @endhistory @@*/ void SetCartSymmetry(cGH *GH, int *sym, const char *imp_gf) { DECLARE_CCTK_PARAMETERS SymmetryGHex *sGHex; int index; /* Pointer to the SymmetryGHextension */ sGHex = (SymmetryGHex *)GH->extensions[CCTK_GHExtensionHandle("Symmetry")]; /* now that we have the same, get the index to the GFs */ index = CCTK_VarIndex(imp_gf); if (index<0) { char *message; message = (char *)malloc((100*strlen(imp_gf))*sizeof(char)); sprintf(message,"Grid function %s has no index",imp_gf); CCTK_WARN(0,message); free(message); }; /* Reference the hash table in the GHex and tell it what kind of symmetry is being applied (depending on sym and the grid layout) If there is no symmetry necessary,set ESYM_NOSYM When we apply a symmetry and find ESYM_UNSET, something went wrong! */ if (CCTK_Equals(symmetry,"full")) { #ifdef DEBUG_BOUND printf(" Registered full grid symmetries for -%s- in SetCartSymmetry\n",imp_gf); #endif sGHex->GFSym[index][0] = GFSYM_NOSYM; sGHex->GFSym[index][2] = GFSYM_NOSYM; sGHex->GFSym[index][4] = GFSYM_NOSYM; } else if (CCTK_Equals(symmetry,"octant")) { #ifdef DEBUG_BOUND printf(" Registered octant symmetries for -%s- in SetCartSymmetry\n",imp_gf); #endif sGHex->GFSym[index][0] = sym[0]; sGHex->GFSym[index][2] = sym[1]; sGHex->GFSym[index][4] = sym[2]; } else if (CCTK_Equals(symmetry,"quadrant")) { #ifdef DEBUG_BOUND printf("Registered quadrant symmetries for -%s- in SetCartSymmetry\n",imp_gf); #endif sGHex->GFSym[index][0] = sym[0]; sGHex->GFSym[index][2] = sym[1]; sGHex->GFSym[index][4] = GFSYM_NOSYM; } else if (CCTK_Equals(symmetry,"bitant")) { #ifdef DEBUG_BOUND printf("Registered bitant symmetries for -%s- in SetCartSymmetry\n",imp_gf); #endif sGHex->GFSym[index][4] = sym[2]; sGHex->GFSym[index][0] = GFSYM_NOSYM; sGHex->GFSym[index][2] = GFSYM_NOSYM; } /* All untouched GFSym[][] will hold GFSYM_UNSET */ } void FMODIFIER FORTRAN_NAME(SetCartSymmetry)(cGH *GH, int *sym, ONE_FORTSTRING_ARG) { ONE_FORTSTRING_CREATE(imp_gf) SetCartSymmetry(GH, sym, imp_gf); free(imp_gf); } /*@@ @routine ApplySymmetry @date Mon Mar 15 15:16:28 1999 @author Gerd Lanfermann @desc Routine applies the symmetry BC to the GF is a group as set by SetSym in GHExtension. It is called by C or Fortran (via a wrapper) by passing the group name. The assignment of the symmetries is carried out by the F routine FortranSym @enddesc @calls FortranSym @calledby @history @endhistory @@*/ void ApplySymmetry(cGH *GH, char *name) { void FORTRAN_NAME(SymmetryCondition)(int *, CCTK_REAL *, int *, int *, int *); DECLARE_CCTK_PARAMETERS SymmetryGHex *sGHex; int groupnum; int first,last,index,j; int doSym[6]; /* Get out if we are sure no symmetries should be applied */ if (CCTK_Equals(symmetry,"full")) return; /* Get the pointer to the Symmetry GH extension */ sGHex = (SymmetryGHex*)GH->extensions[CCTK_GHExtensionHandle("Symmetry")]; #ifdef DEBUG_BOUND printf("\n In ApplySymmetry\n -----------\n"); printf(" Applying boundary conditions to -%s-\n",name); #endif /* Get the group number */ groupnum = CCTK_GroupIndex(name); if (groupnum < 0) { char *message=NULL; message = (char *)malloc(300*sizeof(char)+sizeof(name)); sprintf(message,"Invalid group number decomposing %s",name); CCTK_WARN(0,message); free(message); } /*get the index of the first GF in the group and how many Vars there are*/ first = CCTK_FirstVarIndexI(groupnum); last = first+CCTK_NumVarsInGroupI(groupnum)-1; /* loop over the variables in the group */ for (index=first; index<=last; index++) { /* and check that we actually have a grid function (and not a scalar)*/ if (CCTK_GroupTypeFromVarI(index) == GROUP_GF) { /*at this point, there should be NO ESYM_UNSET anymore if there is, we forgot to register the symmetries for a GF */ if ((sGHex->GFSym[index][0]==GFSYM_UNSET)|| (sGHex->GFSym[index][2]==GFSYM_UNSET)|| (sGHex->GFSym[index][4]==GFSYM_UNSET)) { char *message=NULL; message = (char *)malloc(300*sizeof(char)+sizeof(name)); sprintf(message,"Cannot apply symmetry to -%s- without registered symmetries",name); CCTK_WARN(1,message); free(message); } /* whether we want to apply sym depends on several things: */ for (j=0;j<3;j++) { doSym[2*j+1]=0; if ((GH->cctk_lsh[j]>1) && (sGHex->GFSym[index][2*j] != GFSYM_UNSET) && (sGHex->GFSym[index][2*j] != GFSYM_NOSYM)) doSym[2*j] = 1; else doSym[2*j] = 0; } /* Call the Fortran Symmetry Routine */ FORTRAN_NAME(SymmetryCondition)( GH->cctk_lsh, /* xyz-size of PE local grid */ GH->data[index][0], /* pointer to start of data array for GF[index]*/ GH->cctk_nghostzones, /* number of ghost zones */ sGHex->GFSym[index], /* the symmetries for this GF */ doSym /* flags whether to apply syms */ ); } } } void FMODIFIER FORTRAN_NAME(ApplySymmetry)(cGH *GH, ONE_FORTSTRING_ARG) { ONE_FORTSTRING_CREATE(name) ApplySymmetry(GH,name); free(name); }